Synthesis and characterization of rubbery/glassy blend membranes for CO2/CH4 gas separation

  • S. Mosleh
  • M. R. Mozdianfard
  • M. Hemmati
  • Gh. Khanbabaei
Original Paper


A series of blend membranes made from the rubbery polyether block amide (Pebax®1657) and a glassy polymer, polyethersulfone (PES) or Matrimid 5218, were fabricated by solution casting with different ratios (10–40 %), in order to combine high permeability of the former with high selectivity of the latter polymer for CO2/CH4 gas separation. The membranes were characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and stress–strain tests. These blend membranes showed two distinct T g s, indicating their immiscible nature as confirmed by SEM images. However, weak intermolecular interaction between polymers, as illustrated by the FTIR results, corresponds to some degree to their compatibility and improved mechanical strength, compared to the pure Pebax®. TGA analysis revealed that addition of glassy polymer improved membranes’ thermal stability. Effect of feed pressure on membrane separation, investigated by three different pressures (4, 8, and 12 bar), indicated increased permeability for higher pressures for both CO2 and CH4. Gas separation tests also pointed to improved separation properties of the blend membranes compared to those of the neat polymers, prepared the same way.


Blends Miscibility Membranes Morphology High-performance polymers 



The authors would like to thank both the University of Kashan and Iranian Research Institute of Petroleum Industries for providing supports and provisions needed for this work.


  1. 1.
    Yeo ZY, Chew TL, Zhu PW, Mohamed AR, Chai S-P (2012) Conventional processes and membrane technology for carbon dioxide removal from natural gas: a review. J Nat Gas Chem 21:282–298CrossRefGoogle Scholar
  2. 2.
    Kim S, Chen L, Johnson JK, Marand E (2007) Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment. J Membr Sci 294:147–158CrossRefGoogle Scholar
  3. 3.
    Baker RW (2000) Membrane technology and applications. McGraw-Hill, New YorkGoogle Scholar
  4. 4.
    Baker RW, Low BT (2014) Gas separation membrane materials: a perspective. Macromolecules 47(20):6999–7013CrossRefGoogle Scholar
  5. 5.
    Car A, Stropnik C, Yave W, Peinemann K-V (2008) PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 307:88–95CrossRefGoogle Scholar
  6. 6.
    Ahmad AL, Abdulkarim AA, Ooi BS, Ismail S (2013) Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chem Eng J 223:246–267CrossRefGoogle Scholar
  7. 7.
    Chung TS (1996) A review of microporous composite polymeric membrane technology for air. Polym Polym Compos 4:269–283Google Scholar
  8. 8.
    Stern SA (1994) Polymers for gas separation: the next decade. J Membr Sci 94:1–68CrossRefGoogle Scholar
  9. 9.
    Thomas S, Grohens Y, Jyotishkumar P (2015) Characterization of polymer blends: miscibility, morphology, and interfaces, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, GermanyGoogle Scholar
  10. 10.
    Salleh WNW, Ismail AF (2015) Carbon membranes for gas separation processes: recent progress and future perspective. J Membr Sci Res 1:2–15Google Scholar
  11. 11.
    White JL, Bumm SH (2011) In: Isayev AI, Palsule S (eds) Polymer blend compounding and processing. Encyclopedia of polymer blends. Wiley-VCH, WeinheimGoogle Scholar
  12. 12.
    Panapitiya NP, Wijenayake SN, Nguyen DD, Huang Y, Musselman IH, Jr KJB, Ferraris JP (2015) Gas separation membranes derived from high-performance immiscible polymer blends compatibilized with small molecules. ACS Appl Mater Interfaces 7:18618–18627CrossRefGoogle Scholar
  13. 13.
    Khan AL, Li X, Vankelecom IFJ (2011) SPEEK/Matrimid blend membranes for CO2 separation. J Membr Sci 380:55–62CrossRefGoogle Scholar
  14. 14.
    Car A, Stropnik C, Yave W, Peinemann K-V (2008) Pebax ®/polyethylene glycol blend thin film composite membranes for CO2 separation: performance with mixed gases. Sep Purif Technol 62:110–117CrossRefGoogle Scholar
  15. 15.
    Yave W, Car A, Peinemann K-V (2010) Nanostructured membrane material designed for carbon dioxide separation. J Membr Sci 350:124–129CrossRefGoogle Scholar
  16. 16.
    Reijerkerk SR, Knoef MH, Nijmeijer K, Wessling M (2010) Poly(ethylene glycol) and poly(dimethyl siloxane): combining their advantages into efficient CO2 gas separation membranes. J Membr Sci 352:126–135CrossRefGoogle Scholar
  17. 17.
    Wu H-L, Ma C-CM, Liu F-Y, Chen C-Y, Lee S-J, Chiang C-L (2006) Preparation and characterization of poly(ether sulfone)/sulfonated poly(ether ether ketone) blend membranes. Eur Polym J 42:1688–1695CrossRefGoogle Scholar
  18. 18.
    Kapantaidakis GC, Koops GH, Wessling M (2003) CO2 plasticization of polyethersulfone/polyimide gas-separation membranes. AICHE J 49:1702–1711CrossRefGoogle Scholar
  19. 19.
    Datta S, Lohse D (1993) J Macromol 26:2064CrossRefGoogle Scholar
  20. 20.
    Chiou JS, Maeda Y, Paul DR (1987) Gas permeation in polyethersulfone. J Appl Polym Sci 33:1823–1828CrossRefGoogle Scholar
  21. 21.
    Guan R, Zou H, Lu D, Gong C, Liu Y (2005) Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics. Eur Polym J 41:1554–1560CrossRefGoogle Scholar
  22. 22.
    Jiang D, Zhang S-L, Yang Y-H, Jiang Z-H, Ma R-T (2008) Effect of random copolymers of 2,2-di(4-hydroxy phenyl) and 4,4′-dihydroxyldiphenylsulfone on the morphology and mechanical properties of polyethersulfone and polycarbonate blends, part b: physics. J Macromol Sci 47:1–9CrossRefGoogle Scholar
  23. 23.
    Koros WJ, Coleman MR, Walker DRB (1992) Controlled permeability polymer membranes. Annu Rev Mater Sci 22:47–89CrossRefGoogle Scholar
  24. 24.
    Robeson LM (1999) Polymer membranes for gas separation. Solid State Mater Sci 4:549–552CrossRefGoogle Scholar
  25. 25.
    Khosravi T, Mosleh S, Bakhtiari O, Mohammadi T (2012) Mixed matrix membranes of Matrimid 5218 loaded with zeolite 4A for pervaporation separation of water–isopropanol mixtures. Chem Eng Res Des 90:2353–2363CrossRefGoogle Scholar
  26. 26.
    Mustafa A, Kusworo TD, Busairi A, Ismail AF (2012) Increasing the performance of PES-CNTs mixed matrix membrane using carbon nanotubes (CNTs) functionalization internat. J Waste Resour 2:22–24CrossRefGoogle Scholar
  27. 27.
    Bernardo P, Jansen JC, Bazzarelli F, Tasselli F, Fuoco A, Friess K, Izák P, Jarmarová V, Kacˇírková M, Clarizia G (2012) Gas transport properties of Pebax/room temperature ionic liquid gel membranes. Sep Purif Technol 97:73–82CrossRefGoogle Scholar
  28. 28.
    Mannan HA, Mukhtar H, Murugesan T, Nasir R, Mohshim DF, Mushtaq A (2013) Recent applications of polymer blends in gas separation membranes. Chem Eng Technol 36(11):1838–1846CrossRefGoogle Scholar
  29. 29.
    Kaniappan K, Latha S (2011) Certain investigations on the formulation and characterization of polystyrene/poly(methyl methacrylate) blends. Int J ChemTech Res 3(2):708–717Google Scholar
  30. 30.
    Panapitiya NP, Wijenayake SN, Huang Y, Bushdiecker D, Nguyen D, Ratanawanate C, Kalaw GJ, Gilpin CJ, Musselman IH, Jr KJB, Ferraris JP (2014) Stabilization of immiscible polymer blends using structure directing metal organic frameworks (MOFs). Polymer 55:2028–2034CrossRefGoogle Scholar
  31. 31.
    Silverstein RM, Webster FX (2004) Spectroscopic identification of organic compounds. John Wiley & Sons, SingaporeGoogle Scholar
  32. 32.
    Kim JH, Lee YM (2001) Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes. J Membr Sci 193:209–225CrossRefGoogle Scholar
  33. 33.
    Choi M-C, Jung J-Y, Yeom H-S, Chang Y-W (2012) Mechanical, thermal, barrier, and rheological properties of poly(ether-block-amide) elastomer/organoclay nanocomposite prepared by melt blending. Polym Eng Sci 53:982–991CrossRefGoogle Scholar
  34. 34.
    Ghadimi A, Amirilargani M, Mohammadi T, Kasiri N, Sadatnia B (2014) Preparation of alloyed poly(ether block amide)/poly(ethylene glycol diacrylate) membranes for separation of CO2/H2 (syngas application). J Membr Sci 458:14–26CrossRefGoogle Scholar
  35. 35.
    Qu P, Tang H, Gao Y, Zhang L-p, Wang S (2010) Polyethersulfone composite membrane blended with cellulose fibrils. BioResources 5(4):2323–2336Google Scholar
  36. 36.
    Kusworo TD, Ismail AF, Mustafa A, Li K (2008) The effect of type zeolite on the gas transport properties of polyimide-based mixed matrix membranes. Reaktor 12(2):68–77Google Scholar
  37. 37.
    Ibrahim BA, Kadum KM (2010) Influence of polymer blending on mechanical and thermal properties. Modern Appl Sci 4(9):157–161CrossRefGoogle Scholar
  38. 38.
    Murali RS, Sridhar S, Sankarshana T, Ravikumar YVL (2010) Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind Eng Chem Res 49:6530–6538CrossRefGoogle Scholar
  39. 39.
    Bakhtiari O, Mosleh S, Khosravi T, Mohammadi T (2011) Preparation, characterization and gas permeation of polyimide mixed matrix membranes. J Membra Sci Technol 1 (1)Google Scholar
  40. 40.
    Li T, Pan Y, Peinemann K-V, Lai Z (2013) Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J Membr Sci 425–426:235–242CrossRefGoogle Scholar
  41. 41.
    Karkhanechi H, Kazemian H, Nazockdast H, Mozdianfard MR, Bidoki SM (2012) Fabrication of homogenous polymer-zeolite nanocomposites as mixed-matrix membranes for gas separation. Chem Eng Technol 35:885–892CrossRefGoogle Scholar
  42. 42.
    Popov V (2004) Mater Sci Eng 43:61–102CrossRefGoogle Scholar
  43. 43.
    Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185CrossRefGoogle Scholar
  44. 44.
    Ghadimi A, Shahidi K, Mohammadi T (2009) Ternary gas permeation through a synthesized PDMS membrane: experimental and modeling. J Membr Sci 344:225–236CrossRefGoogle Scholar
  45. 45.
    Tin PS, Chung TS, Liu Y, Wang R, Liu SL, Pramoda KP (2003) Effects of cross-linking modification on gas separation performance of Matrimid membranes. J Membr Sci 225:77CrossRefGoogle Scholar
  46. 46.
    Thornton AW, Dubbeldam D, Liu MS, Ladewig BP, Hill AJ, Hill MR (2012) Feasibility of zeolitic imidazolate framework membranes for clean energy applications. Energy Environ Sci 5:7637CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • S. Mosleh
    • 1
  • M. R. Mozdianfard
    • 1
  • M. Hemmati
    • 2
  • Gh. Khanbabaei
    • 2
  1. 1.Department of Chemical EngineeringUniversity of KashanKashanIran
  2. 2.Chemical Polymeric and Petrochemical Technology Development Research DivisionResearch Institute of Petroleum Industry (RIPI)TehranIran

Personalised recommendations