Advertisement

Investigation of polymer dynamics in chitosan-maghemite nanocomposites: a potential green superparamagnetic material

  • Annamalai Saravanan
  • Radha Perumal Ramasamy
Original Paper

Abstract

Magnetic composites with superparamagnetic properties have attracted great scientific interest recently. In this article we have investigated chitosan-maghemite (γ-Fe2O3) nanocomposite. We have analyzed the effect of temperature and the concentration of maghemite nanoparticles upon the relaxation behaviour of the nanocomposite using Broad band dielectric spectroscopy (BDS). Additionally, various characterization techniques such as X-ray diffraction (XRD), Fourier transform infra red spectra (FTIR), Scanning electron microscopy (SEM), Transmission electron spectroscopy (TEM), Thermo gravimetric Analysis (TGA), Vibrating Sample Magnetometer (VSM), Atomic Force Microscopy (AFM) and Raman spectroscopy have been used for our investigation. Our investigation shows that maghemite nanoparticles interact with chitosan leading to morphological changes in the films and results in modifications in the dielectric and electrical characteristics of the nanocomposite. New relaxations have been identified and their modifications due to maghemite nanoparticles have been investigated. The nanocomposites exhibit superparamagnetic behaviour. This research will benefit research in battery technology and super capacitors.

Keywords

Nanocomposites Polymer relaxation Magnetic nanoparticles 

Notes

Acknowledgments

The research was made possible due to funding provided by BOARD OF RESEARCH IN NUCLEAR SCIENCES (BRNS) India Sanction No 2011/37C/21/BRNS.

References

  1. 1.
    Zhu J, Zhang X, Haldolaarachchige N, Wang Q, Luo Z, Ryu J, Young DP, Wei S, Guo Z (2012) J Mater Chem 22:4996CrossRefGoogle Scholar
  2. 2.
    Mavinakuli P, Wei S, Wang Q, Karki AB, Dhage S, Wang Z, Young DP, Guo Z J Phys Chem C 114, 3874.Google Scholar
  3. 3.
    Zhu J, Gu H, Luo Z (2012) Langmuir 28:10246CrossRefGoogle Scholar
  4. 4.
    Drmota A, Koselj J, Drofenik M, Znidarsic A (2012) J Magn Magn Mater 324:1225CrossRefGoogle Scholar
  5. 5.
    Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra BD (2008) Biosens. Bioelectron 24:676CrossRefGoogle Scholar
  6. 6.
    Rinki K, Dutta PK (2010) J Macromol Sci Part A Pure Appl Chem 47:429CrossRefGoogle Scholar
  7. 7.
    Liu X, Hu Q, Fang Z, Zhang X, Zhang B (2009) Langmuir 25:3CrossRefGoogle Scholar
  8. 8.
    Jiang R, Fu YQ, Zhu HY, Yao J, Xiao L (2012) J Appl Polym Sci 125:E540CrossRefGoogle Scholar
  9. 9.
    Martins P, Costa CM, Benelmekki M, Lanceros MS (2012) J Nanosci Nanotechnol 12:6845CrossRefGoogle Scholar
  10. 10.
    Singh J, Srivastava M, Dutta J, Dutta PK (2011) Int J Biol Macromol 48:170CrossRefGoogle Scholar
  11. 11.
    Teja AS, Koh PY (2009) Prog Cryst Growth Charact Mater 55:22CrossRefGoogle Scholar
  12. 12.
    Chamritski I, Burns GJ (2005) Phys Chem B 109:4965CrossRefGoogle Scholar
  13. 13.
    Neuberger T, Schopf B, Hofmann H, Hofmann M, Von Rechenberg B (2005) J Magn Magn Mater 293:483CrossRefGoogle Scholar
  14. 14.
    Bhowmik RN, Saravanan A (2010) J Appl Phys 107:053916lCrossRefGoogle Scholar
  15. 15.
    Batlle X, Labarta A (2002) J Phys D Apply Phys 35:R15CrossRefGoogle Scholar
  16. 16.
    Nazari M, Ghasemi N, Maddah H, Motlagh MM (2014) J Nanostruct Chem 4:99CrossRefGoogle Scholar
  17. 17.
    Tartaj P, Morales MP, Verdaguer SV, Carreno TG, Serna CJ (2003) J Phys D Appl Phys 36:R182CrossRefGoogle Scholar
  18. 18.
    Arias JL, Reddy LH, Couvreur P (2012) J Mater Chem 22:7622CrossRefGoogle Scholar
  19. 19.
    Mitchell E, Gupta RK, Darkwa KM, Kumar D, Ramasamy K, Gupta BK, Kaho P (2014) New J Chem 38:4344CrossRefGoogle Scholar
  20. 20.
    Belle CJ, Bonamin A, Simon U, Santoyo-Salazar J, Pauly M, Begin-Colin S, Pourroy G (2011) Sensors Actuators B Chem 160:942CrossRefGoogle Scholar
  21. 21.
    Yashchenok AM, Gorin DA, Badylevich M, Serdobintsev AA, Bedard M, Fedorenko YG, Khomutov GB, Grigoriev DO, Mohwald H (2010) Phys Chem Chem Phys 12:10469CrossRefGoogle Scholar
  22. 22.
    Shi W, Zhu J, Sim DH, Tay YY, Lu Z, Zhang X, Sharma Y, Srinivasan M, Zhang H, Hng HH, Yan Q (2011) J Mater Chem 21:3422CrossRefGoogle Scholar
  23. 23.
    Caprile A, Coisson M, Fiorillo F, Kabos P, Manu OM, Olivetti ES, Olariu MA, Pasquale M, Scarlatache VA (2012) IEEE Trans Magn 48:3394CrossRefGoogle Scholar
  24. 24.
    Lu J, Yang S, Ng KM, Su CH, Yeh CS, Wu YN, Shieh DB (2006) Nanotechnology 17:5812CrossRefGoogle Scholar
  25. 25.
    Wu ZX, Li W, Webley PA, Zhao DY (2012) Adv Mater 24:485CrossRefGoogle Scholar
  26. 26.
    Muzzarelli RAA, Greco F, Busilacchi A, Sollazzo V, Gigante A (2012) Carbohydr Polym 89:723CrossRefGoogle Scholar
  27. 27.
    Das M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Prog Polym Sci 36:981CrossRefGoogle Scholar
  28. 28.
    Wan Y, Peppley B, Creber KAM, Tam Bui V, Halliop E (2008) J Power Sources 185:183CrossRefGoogle Scholar
  29. 29.
    Yue L, Zhang L, Zhong H (2014) J Power Sources 247:327CrossRefGoogle Scholar
  30. 30.
    Pandiselvi K, Thambidurai S (2014) Ionics 20:551CrossRefGoogle Scholar
  31. 31.
    Zawodzinski TA, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) J Electrochem Soc 140:1041CrossRefGoogle Scholar
  32. 32.
    Avellaned COA, Vieira DF, Al-Kahlout A, Leite ER, Pawlicka A, Aegerter MA (2007) Electrochemica Acta 53:1648CrossRefGoogle Scholar
  33. 33.
    Natesan B, Karan NK, Katiyar RS (2006) Phys Rev E 48:042801CrossRefGoogle Scholar
  34. 34.
    Arias JL, Reddy LH, Couvreur PJ (2012) Mater Chem 22:7622CrossRefGoogle Scholar
  35. 35.
    Neamtu J, Verga N (2011) Digest J Nano Biomater 6:969Google Scholar
  36. 36.
    Bhatt AS, Bhat DK, Santosh MS, Tai CW (2011) J Mater Chem 21:13490CrossRefGoogle Scholar
  37. 37.
    Liu P, Huang Y, Zhang X (2014) J Alloys Compd 596:25CrossRefGoogle Scholar
  38. 38.
    Millan A, Urtizberea A, Silva NJO, Palacio F, Amaral VS, Snoeck E, Serin V (2007) J Magn Magn Mater 312:L2CrossRefGoogle Scholar
  39. 39.
    Gyergyek S, Huskic M, Makovec D, Drofenik M (2008) Collides and Surfaces A Physicochem Eng Aspects 317:49CrossRefGoogle Scholar
  40. 40.
    Pawlicka A, Danczuk M, Wladystaw W, Monikowska EZ (2008) J Phys Chem A 112:8888CrossRefGoogle Scholar
  41. 41.
    Li GY, Jiang YR, Huang KL, Ding P, Yao LL (2008) Colloids Surf A Physicochem Eng Asp 20:11CrossRefGoogle Scholar
  42. 42.
    Kulkarni PV, Keshavayya J (2010) Int J Pharm Pharmaceut Sci 2:77Google Scholar
  43. 43.
    De Faria DLA, Silva SV, De Oliveria MTJ (1997) Raman Spectrosc 28:873CrossRefGoogle Scholar
  44. 44.
    Mori K, Kondo Y, Morimoto S, Yamashita H (2008) J Phys Chem C 112:397CrossRefGoogle Scholar
  45. 45.
    Deng J, He C, Peng Y, Wang J, Long X, Li P, Chan ASC (2003) Synth Met 139:295CrossRefGoogle Scholar
  46. 46.
    Lucas IT, Durand-Vidal S, Dubois E, Chevalet J, Turq P (2007) J Phys Chem C 111:18568CrossRefGoogle Scholar
  47. 47.
    Butler MF, Cameron RE (2000) Polymer 41:2249CrossRefGoogle Scholar
  48. 48.
    Viciosa MT, Dionisio M, Silva RM, Reis RL, Mano JF (2004) Biomacromolecules 5:2073CrossRefGoogle Scholar
  49. 49.
    Gonzalez-Campos JB, Prokhorov E, Luna-Barcenas G, Fonseca-Garcia A, Sanchez IC, Polym J (2009) Sci, Part B: Polym Phys 47:2259–2271CrossRefGoogle Scholar
  50. 50.
    Zhu HL, Bai YJ, Liu R, Lun N, Qi YX, Han FD, Bi JQ (2011) J Mater Chem 21:13581CrossRefGoogle Scholar
  51. 51.
    Louati B, Guindara K Mater (2012) Sci Eng B 117, 838.Google Scholar
  52. 52.
    Vijaya N, Selvasekarapandian S, Hirankumar G, Karthikeyan S, Nithya H, Ramya CS, Prabu M (2012) Ionics 18:91CrossRefGoogle Scholar
  53. 53.
    Zhu J, Gu H, Luo Z (2012) Langmuir 28, 10246.Google Scholar
  54. 54.
    Rosenbaum R, Milner A, Haberkern R, Häussler P, Palm E, Murphy T, Hannahs S, Brandt B (2001) J Phys Condens Matter 13:3169CrossRefGoogle Scholar
  55. 55.
    Wubbenhorst M, Turnhout JV (2002) J Non-Cryst Solids 40:305Google Scholar
  56. 56.
    Jiménez ML, Arroyo FJ, Van Turnhout J, Delgado AV (2002) J Colloid Interface Sci 249:327CrossRefGoogle Scholar
  57. 57.
    Neagu A, Curecheriu L, Airimioaei M, Cazacu A, Cernescu A, Mitoseriu L (2015) Composites Part B 71:210CrossRefGoogle Scholar
  58. 58.
    Macedo PB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13:171Google Scholar
  59. 59.
    Molak A, Paluch M, Pawlus S, Klimontko J, Ujma Z, Gruszka I (2005) J Phys D Appl Phys 38:1450CrossRefGoogle Scholar
  60. 60.
    Migahed MD, Ishra M, Fahmy T, Barakat A (2004) J Phys Chem Solids 65:1121CrossRefGoogle Scholar
  61. 61.
    Hodge IM, Ingram MD, West AR (1976) J Electroanal Chem 74:125CrossRefGoogle Scholar
  62. 62.
    Gerhardt R (1994) J Phys Chem Solids 55:1491CrossRefGoogle Scholar
  63. 63.
    Patro LN, Hariharan K (2009) Mater Sci Eng B 162:173CrossRefGoogle Scholar
  64. 64.
    Pathmanathan K, Johari GP (1991) J Chem Phys 95:5990CrossRefGoogle Scholar
  65. 65.
    Bhowmik RN (2012) Ceram Int 38:5069CrossRefGoogle Scholar
  66. 66.
    Shukla A, Choudhary RNP, Thakur AK (2009) J Phys Chem Solids 70:1401CrossRefGoogle Scholar
  67. 67.
    Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy AM, Zhang X (2008) Science 321:930CrossRefGoogle Scholar
  68. 68.
    Pradhan DK, Choudhary RNP, Samantaray BK (2009) Mater Chem Phys 115:557CrossRefGoogle Scholar
  69. 69.
    Gu H, Tadakamalla S, Zhang X, Huang YD, Jiang Y, Colorado HA, Luo Z, Wei S, Guo Z (2012) J Mater Chem C 1:729CrossRefGoogle Scholar
  70. 70.
    Rajeswari N, Selvasekarapandian S, Karthikeyan S, Prabu M, Hirankumar G, Nithya H, raja Sanjeevi C (2011) J Non Crystalline Solids 357:3751CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Applied Science and TechnologyAlagappa College of Technology, Anna UniversityChennaiIndia

Personalised recommendations