Skip to main content
Log in

Synthesis of chemically amplified photoresist polymer containing four (Meth)acrylate monomers via RAFT polymerization and its application for KrF lithography

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

KrF photoresist polymers (PASTMs) were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. Four (meth)acrylates with lithographic functionalities including styrene (St), 4-acetoxystyrene (AST), 2-methyl-2-adamantyl methacrylate (MAMA), and tert-butyl acrylate(TBA) were used as monomer components and 2-methyl-2-[(dodecylsulfanylthiocarbonyl) sulfanyl]propanoic acid (MDFC) was used as RAFT agent, varying the RAFT content could modulate molecular weight. Fourier-transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H NMR) indicated that the synthesis was successful. Gel permeation chromatography (GPC) showed that the molecular weight decreased with the increased content of MDFC, and all the polymers possessed weight-average molecular weight below ten thousand and polydispersity less than 1.32. Thermogravimetric analysis (TGA) characterized the thermal properties, the results implied that initial thermal decomposition temperature reached 200 °C, which could satisfy the lithography process. Differential scanning calorimetry (DSC) showed that the Tg decreases with molecular weight. The RAFT polymerization kinetics plots demonstrated that the polymerization was first-order, the number-average molecular weights of the polymers with relatively low polydispersity index values increased with total monomer conversions indicating that the concentration of growing radicals was constant throughout the polymerization process. The narrow molecular weight distribution and composition uniformity of the polymers prepared by RAFT polymerization could be beneficial for lithography, after alcoholysis, lithography evaluation under KrF lithography showed that this homogeneous polymer photoresist exhibited better space and line (S/L) pattern with resolution of 0.18 μm according to the SEM image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ito H, Willson CG (1983) Polym Eng Sci 23:1012

    Article  CAS  Google Scholar 

  2. Ito H (2000) IBM J Res Dev 44:1/2

    Article  Google Scholar 

  3. Ito H (2003) J Polym Sci Polym Chem 41:3863–3870

    Article  CAS  Google Scholar 

  4. Henderson CL (2012) Polym Sci: Comprehen Ref 8:37–76

    Google Scholar 

  5. Conley W, Garza C (2011) Photochemistry 38:369–387

    Google Scholar 

  6. Ito H (2005) Adv Polym Sci 172:37–245

    Article  CAS  Google Scholar 

  7. Prabhu VM, Shuhui K, VanderHart DL, Sushil K (2011) Adv Mater 23:388–408

    Article  CAS  Google Scholar 

  8. Yi G, Hill DJT, Whittaker AK, Kevin S (2015) Macromolecules 48:3438–3448

    Article  Google Scholar 

  9. Poliakov P, Blomme P (2012) Microelectron Reliab 52:525–529

    Article  Google Scholar 

  10. Gogolides E, Constantoudis V (2006) Microelectron Eng 83:1067–1072

    Article  CAS  Google Scholar 

  11. Patsis GP, Gogolides E (2005) J Phys Conf Ser 1:389–392

    Article  Google Scholar 

  12. Shuhui K, Shuhui K, Wu W l (2007) Macromolecules 40:1497–1503

    Article  Google Scholar 

  13. Sohn HS, Cha SH, Kim JH, Lee JC (2011) Macromol Res 19:722–728

    Article  CAS  Google Scholar 

  14. Kato M, Kamigaito M, Sawamoto M (1995) Macromolecules 28:1721–1723

    Article  CAS  Google Scholar 

  15. Chen H, Chen LF, Wang CH, RongJun Q (2011) J Polym Sci Polym Chem 49:1046–1049

    Article  CAS  Google Scholar 

  16. Wieberger F, Forman DC, Neuber C (2012) J Mater Chem 22:73–79

    Article  CAS  Google Scholar 

  17. Fukukawa K, Zhu L, Gopalan P, Ueda M (2005) Macromolecules 38:263–270

    Article  CAS  Google Scholar 

  18. Lai JT, Filla D, Shea R (2002) Macromolecules 35:6754–6756

    Article  CAS  Google Scholar 

  19. Chong YK, Moad G, Rizzardo E, Skidmore MA (2007) Macromolecules 40:9262–9271

    Article  CAS  Google Scholar 

  20. Luo YW, Liu XZ (2004) J Polym Sci Polym Chem 42:6248–6258

    Article  CAS  Google Scholar 

  21. Moad G, Rizzardo E, Thang SH (2005) Aust J Chem 58:379–410

    Article  CAS  Google Scholar 

  22. Zhang H (2013) Eur Polym J 49:579–600

    Article  CAS  Google Scholar 

  23. Braunecker WA, Matyjaszewski K (2007) Prog Polym Sci 32:93–146

    Article  CAS  Google Scholar 

  24. Zhang QH, Wang QY, Luo ZH, Zhan XL, Chen FQ (2009) Polym Eng Sci 49:1818–1824

    Article  CAS  Google Scholar 

  25. Helen W, Rachel K (2010) Polym Chem 1:149–157

    Article  Google Scholar 

  26. Guo LX, Guan J, Zhao XF, Lin BP, Yang H (2015) J Appl Polym Sci 132:41733

    Google Scholar 

  27. Qin L, Kishpaugh MA, Devon A (2010) J Polym Sci Polym Chem 48:943–951

    Article  Google Scholar 

  28. Sohn HS, Kim DG, Lee A (2015) J Ind Eng Chem 21:1098–1104

    Article  CAS  Google Scholar 

  29. Greg B, Hofer DC, Ito H (1994) J Photopolym Sci Technol 3:449–460

    Google Scholar 

  30. Liu JH, Hsieh CD, Tseng CC (2005) J Appl Polym Sci 96:1505–1514

    Article  CAS  Google Scholar 

  31. Hung HJ, Yang PC, Liu JH (2008) J Appl Polym Sci 109:3776–3785

    Article  CAS  Google Scholar 

  32. Kim JB, Kim H (1999) Polymer 40:4055–4061

    Article  CAS  Google Scholar 

  33. Fox TG, Flory PJ (1954) J Polym Sci 14:315–319

    Article  CAS  Google Scholar 

  34. Widmaier JM, Meyer GC (1982) J Therm Anal 23:193–199

    Article  CAS  Google Scholar 

  35. Kanagasabapathy S, Sudalai A, Benicewicz B (2001) Macromol Rapid Commun 22:1076–1080

    Article  CAS  Google Scholar 

  36. Chaduc I, Lansalot M, D’Agosto F (2012) Macromolecules 45:1241–1247

    Article  CAS  Google Scholar 

  37. Zhang YY, Cheng ZP, Chen XR, Zhang W (2007) Macromolecules 40:4809–4817

    Article  CAS  Google Scholar 

  38. Favier A, Charreyre MT (2006) Macromol Rapid Commun 27:653–692

    Article  CAS  Google Scholar 

  39. Chong YK, Krstina J, Le TPT (2003) Macromolecules 36:2256–2272

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Innovation Foundation of Jiangsu (No.BY2015019-14), the National Science and Technology Major Project of China (No.2010ZX02304) and the Jiangsu Postgraduate Scientific Research and Innovation Plan Project (No.KYLX_1127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoya Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, J., Zheng, X. et al. Synthesis of chemically amplified photoresist polymer containing four (Meth)acrylate monomers via RAFT polymerization and its application for KrF lithography. J Polym Res 23, 102 (2016). https://doi.org/10.1007/s10965-016-0996-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0996-3

Keywords

Navigation