Advertisement

Synthesis of chemically amplified photoresist polymer containing four (Meth)acrylate monomers via RAFT polymerization and its application for KrF lithography

  • Hu Li
  • Jingcheng Liu
  • Xiangfei Zheng
  • Changwei Ji
  • Qidao Mu
  • Ren Liu
  • Xiaoya Liu
Original Paper

Abstract

KrF photoresist polymers (PASTMs) were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. Four (meth)acrylates with lithographic functionalities including styrene (St), 4-acetoxystyrene (AST), 2-methyl-2-adamantyl methacrylate (MAMA), and tert-butyl acrylate(TBA) were used as monomer components and 2-methyl-2-[(dodecylsulfanylthiocarbonyl) sulfanyl]propanoic acid (MDFC) was used as RAFT agent, varying the RAFT content could modulate molecular weight. Fourier-transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H NMR) indicated that the synthesis was successful. Gel permeation chromatography (GPC) showed that the molecular weight decreased with the increased content of MDFC, and all the polymers possessed weight-average molecular weight below ten thousand and polydispersity less than 1.32. Thermogravimetric analysis (TGA) characterized the thermal properties, the results implied that initial thermal decomposition temperature reached 200 °C, which could satisfy the lithography process. Differential scanning calorimetry (DSC) showed that the Tg decreases with molecular weight. The RAFT polymerization kinetics plots demonstrated that the polymerization was first-order, the number-average molecular weights of the polymers with relatively low polydispersity index values increased with total monomer conversions indicating that the concentration of growing radicals was constant throughout the polymerization process. The narrow molecular weight distribution and composition uniformity of the polymers prepared by RAFT polymerization could be beneficial for lithography, after alcoholysis, lithography evaluation under KrF lithography showed that this homogeneous polymer photoresist exhibited better space and line (S/L) pattern with resolution of 0.18 μm according to the SEM image.

Keywords

Chemically amplified photoresist KrF lithography Reversible addition-fragmentation chain transfer polymerization(RAFT) Polymerization kinetics 

Notes

Acknowledgments

This work was supported by Innovation Foundation of Jiangsu (No.BY2015019-14), the National Science and Technology Major Project of China (No.2010ZX02304) and the Jiangsu Postgraduate Scientific Research and Innovation Plan Project (No.KYLX_1127).

References

  1. 1.
    Ito H, Willson CG (1983) Polym Eng Sci 23:1012CrossRefGoogle Scholar
  2. 2.
    Ito H (2000) IBM J Res Dev 44:1/2CrossRefGoogle Scholar
  3. 3.
    Ito H (2003) J Polym Sci Polym Chem 41:3863–3870CrossRefGoogle Scholar
  4. 4.
    Henderson CL (2012) Polym Sci: Comprehen Ref 8:37–76Google Scholar
  5. 5.
    Conley W, Garza C (2011) Photochemistry 38:369–387Google Scholar
  6. 6.
    Ito H (2005) Adv Polym Sci 172:37–245CrossRefGoogle Scholar
  7. 7.
    Prabhu VM, Shuhui K, VanderHart DL, Sushil K (2011) Adv Mater 23:388–408CrossRefGoogle Scholar
  8. 8.
    Yi G, Hill DJT, Whittaker AK, Kevin S (2015) Macromolecules 48:3438–3448CrossRefGoogle Scholar
  9. 9.
    Poliakov P, Blomme P (2012) Microelectron Reliab 52:525–529CrossRefGoogle Scholar
  10. 10.
    Gogolides E, Constantoudis V (2006) Microelectron Eng 83:1067–1072CrossRefGoogle Scholar
  11. 11.
    Patsis GP, Gogolides E (2005) J Phys Conf Ser 1:389–392CrossRefGoogle Scholar
  12. 12.
    Shuhui K, Shuhui K, Wu W l (2007) Macromolecules 40:1497–1503CrossRefGoogle Scholar
  13. 13.
    Sohn HS, Cha SH, Kim JH, Lee JC (2011) Macromol Res 19:722–728CrossRefGoogle Scholar
  14. 14.
    Kato M, Kamigaito M, Sawamoto M (1995) Macromolecules 28:1721–1723CrossRefGoogle Scholar
  15. 15.
    Chen H, Chen LF, Wang CH, RongJun Q (2011) J Polym Sci Polym Chem 49:1046–1049CrossRefGoogle Scholar
  16. 16.
    Wieberger F, Forman DC, Neuber C (2012) J Mater Chem 22:73–79CrossRefGoogle Scholar
  17. 17.
    Fukukawa K, Zhu L, Gopalan P, Ueda M (2005) Macromolecules 38:263–270CrossRefGoogle Scholar
  18. 18.
    Lai JT, Filla D, Shea R (2002) Macromolecules 35:6754–6756CrossRefGoogle Scholar
  19. 19.
    Chong YK, Moad G, Rizzardo E, Skidmore MA (2007) Macromolecules 40:9262–9271CrossRefGoogle Scholar
  20. 20.
    Luo YW, Liu XZ (2004) J Polym Sci Polym Chem 42:6248–6258CrossRefGoogle Scholar
  21. 21.
    Moad G, Rizzardo E, Thang SH (2005) Aust J Chem 58:379–410CrossRefGoogle Scholar
  22. 22.
    Zhang H (2013) Eur Polym J 49:579–600CrossRefGoogle Scholar
  23. 23.
    Braunecker WA, Matyjaszewski K (2007) Prog Polym Sci 32:93–146CrossRefGoogle Scholar
  24. 24.
    Zhang QH, Wang QY, Luo ZH, Zhan XL, Chen FQ (2009) Polym Eng Sci 49:1818–1824CrossRefGoogle Scholar
  25. 25.
    Helen W, Rachel K (2010) Polym Chem 1:149–157CrossRefGoogle Scholar
  26. 26.
    Guo LX, Guan J, Zhao XF, Lin BP, Yang H (2015) J Appl Polym Sci 132:41733Google Scholar
  27. 27.
    Qin L, Kishpaugh MA, Devon A (2010) J Polym Sci Polym Chem 48:943–951CrossRefGoogle Scholar
  28. 28.
    Sohn HS, Kim DG, Lee A (2015) J Ind Eng Chem 21:1098–1104CrossRefGoogle Scholar
  29. 29.
    Greg B, Hofer DC, Ito H (1994) J Photopolym Sci Technol 3:449–460Google Scholar
  30. 30.
    Liu JH, Hsieh CD, Tseng CC (2005) J Appl Polym Sci 96:1505–1514CrossRefGoogle Scholar
  31. 31.
    Hung HJ, Yang PC, Liu JH (2008) J Appl Polym Sci 109:3776–3785CrossRefGoogle Scholar
  32. 32.
    Kim JB, Kim H (1999) Polymer 40:4055–4061CrossRefGoogle Scholar
  33. 33.
    Fox TG, Flory PJ (1954) J Polym Sci 14:315–319CrossRefGoogle Scholar
  34. 34.
    Widmaier JM, Meyer GC (1982) J Therm Anal 23:193–199CrossRefGoogle Scholar
  35. 35.
    Kanagasabapathy S, Sudalai A, Benicewicz B (2001) Macromol Rapid Commun 22:1076–1080CrossRefGoogle Scholar
  36. 36.
    Chaduc I, Lansalot M, D’Agosto F (2012) Macromolecules 45:1241–1247CrossRefGoogle Scholar
  37. 37.
    Zhang YY, Cheng ZP, Chen XR, Zhang W (2007) Macromolecules 40:4809–4817CrossRefGoogle Scholar
  38. 38.
    Favier A, Charreyre MT (2006) Macromol Rapid Commun 27:653–692CrossRefGoogle Scholar
  39. 39.
    Chong YK, Krstina J, Le TPT (2003) Macromolecules 36:2256–2272CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Hu Li
    • 1
  • Jingcheng Liu
    • 1
  • Xiangfei Zheng
    • 1
  • Changwei Ji
    • 1
  • Qidao Mu
    • 2
  • Ren Liu
    • 1
  • Xiaoya Liu
    • 1
  1. 1.Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiChina
  2. 2.Suzhou Rui Hong Electronic Chemicals Co., Ltd.SuzhouChina

Personalised recommendations