Advertisement

Radical copolymerization of higher alkyl methacrylates with acrylic esters and amides in toluene: influence of monomer association on copolymer composition

  • Oleg A. Kazantsev
  • Sofia I. Kamorina
  • Misha Rumyantsev
  • Denis M. Kamorin
  • Alexey P. Sivokhin
Original Paper

Abstract

A strong concentration effect was found in a course of copolymerization of higher N-alkylacrylamides with higher alkyl acrylates in toluene, where the fraction of amide functions in copolymers obtained at low degrees of conversion decreases significantly with an increase in total concentration of monomers in solution. It was established that the observed effect is independent of the structure of alkyl substitutes for both types of monomers. The data gathered with the aid of IR spectroscopy and computer modeling show that this concentration effect relates to the formation of amide associates in solution. The concentration effect was absent for the copolymerization of higher alkyl methacrylates and higher alkyl acrylates.

Keywords

N-alkylacrylamides Alkyl acrylates Alkyl methacrylates Radical polymerization Toluene Concentration effects Association Hydrogen bond Computer modeling IR spectroscopy 

Notes

Acknowledgments

This work was financially supported by the Russian Science Foundation (project №15-13-00032).

References

  1. 1.
    Sivik M, Bryant C (1998). United States Patent 5821313 (A), Oct 13Google Scholar
  2. 2.
    Riahi F, Bouaziz A, Benmesli S, Doufnoune R (2008) Int J Polym Mater Polym Biomater 57(7):745–758CrossRefGoogle Scholar
  3. 3.
    Kazantsev OA, Samodurova SI, Sivokhin AP, Moikin AA, Medzhibovskii AS (2014) Pet Chem 54(1):72–77CrossRefGoogle Scholar
  4. 4.
    Buback M, Feldermann A, Barner-Kowollik C, Lacík I (2001) Macromolecules 34(16):5439–5448CrossRefGoogle Scholar
  5. 5.
    de la Fuente JL, López Madruga E (1999) Macromol Chem Phys 200(7):1639–1643CrossRefGoogle Scholar
  6. 6.
    Hagiopol C (2006) J Macromol Sci. Part A 43(3):487–495Google Scholar
  7. 7.
    Madruga EL, Fernández-García M (1996) Macromol Chem Phys 197(11):3743–3755CrossRefGoogle Scholar
  8. 8.
    Leoni A, Franco S, Saini G (1973) Makromol Chem 165(1):97–104CrossRefGoogle Scholar
  9. 9.
    Orbay M, Laible R, Dulog L (1982) Makromol Chem 183(1):47–63CrossRefGoogle Scholar
  10. 10.
    Kodaira Т, Yang J, Hiroshi A (1988) Polym J 20(11):1021–1029CrossRefGoogle Scholar
  11. 11.
    Cherneva A, Cser F, Nyitrai K, Kiss K, Hardy G (1983) Acta Chir Hung 114(3–4):235–247Google Scholar
  12. 12.
    Jordan EF, Bennett R, Shuman AC, Wrigley AN (1970) J Polym Sci: Part A-1: Polym Chem 8(11):3113–3121CrossRefGoogle Scholar
  13. 13.
    Bork JF, Wyman DP, Coleman LE (1963) J Appl Polym Sci 7(2):451–459CrossRefGoogle Scholar
  14. 14.
    Klemperer W, Cronyn MW, Maki AH, Pimentel GC (1954) JACS 76(22):5846–5848CrossRefGoogle Scholar
  15. 15.
    Jović B, Nikolić A, Kordić B (2014) J Mol Liq 191:10–15CrossRefGoogle Scholar
  16. 16.
    Nikolic A, Mladenovic M, Ladislav G (2003) J Serb Chem Soc 68(10):715–718CrossRefGoogle Scholar
  17. 17.
    Nikolić AD, Rozsa-Tarjani M, Komaromi A, Csanadi J, Petrović SD (1992) J Mol Struct 267:49–54CrossRefGoogle Scholar
  18. 18.
    Nikolić AD, Tarjani-Rozsa M, Perišić-Janjić NU, Petrik A, Antonović DG (1990) J Mol Struct 219:245–250CrossRefGoogle Scholar
  19. 19.
    Dixon DA, Dobbs KD, Valentini JJ (1994) J Phys Chem 98(51):13435–13439CrossRefGoogle Scholar
  20. 20.
    S-i M, Simanouti T, Nagakura S, Kuratani K, Tsuboi M, Baba H, Fujioka O (1950) JACS 72(8):3490–3494CrossRefGoogle Scholar
  21. 21.
    McLachlan RD, Nyquist RA (1964) Spectrochim Acta 20(9):1397–1406CrossRefGoogle Scholar
  22. 22.
    Kazantsev O, Samodurova S, Sivokhin A, Goncharova O, Kamorin D, Shirshin K, Orekhov D (2013) J Polym Res 20(1):1–6CrossRefGoogle Scholar
  23. 23.
    Nikki K (1990) Magn Reson Chem 28(5):385–388CrossRefGoogle Scholar
  24. 24.
    Mondet J, Lion B (1994). United States Patent 5324765 (A), Jun 28Google Scholar
  25. 25.
    Kazantsev O, Sivokhin A, Shirshin K, Gur’yanov O, Samodurova S (2010) Russ J Appl Chem 83(6):1062–1068CrossRefGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian Inc., Pittsburgh PAGoogle Scholar
  27. 27.
    Orekhov DV, Kamorin DM, Rumyantsev M, Kazantsev OA, Sivokhin AP, Gushchin AV, Savinova MV (2015) Colloid Surface Physicochem Eng Aspect 481:20–30CrossRefGoogle Scholar
  28. 28.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  29. 29.
    Adamo C, Barone V (1997) Chem Phys Lett 274(1–3):242–250CrossRefGoogle Scholar
  30. 30.
    Becke AD (1997) J Chem Phys 107(20):8554–8560CrossRefGoogle Scholar
  31. 31.
    Miertus̃ S, Tomasi J (1982) Chem Phys 65(2):239–245CrossRefGoogle Scholar
  32. 32.
    Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107(8):3210–3221CrossRefGoogle Scholar
  33. 33.
    Johnston NW (1973) J Macromol Sci: Part A - Chem 7(2):531–545CrossRefGoogle Scholar
  34. 34.
    Mayo FR, Lewis FM (1944) JACS 66(9):1594–1601CrossRefGoogle Scholar
  35. 35.
    O'Driscoll KF, Reilly PM (1987) Makromol Chem Macromol Symp 10-11(1):355–374CrossRefGoogle Scholar
  36. 36.
    Coote ML, Davis TP, Klumperman B, Monteiro MJ (1998) J Macromol Sci Polym Rev 38(4):567–593CrossRefGoogle Scholar
  37. 37.
    Harwood HJ (1987) Makromol Chem Macromol Symp 10-11(1):331–354CrossRefGoogle Scholar
  38. 38.
    Semchikov YD, Smirnova LA (1999) Polym Sci. Ser B Polym Chem 41(3–4):102Google Scholar
  39. 39.
    Korolev GV, Perepelitsina EO (2001) Polym Sci. Ser A Polym Phys 43(5):474Google Scholar
  40. 40.
    Pascal P, Winnik MA, Napper DH, Gilbert RG (1993) Macromolecules 26(17):4572–4576CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Oleg A. Kazantsev
    • 1
    • 2
    • 3
  • Sofia I. Kamorina
    • 1
    • 3
  • Misha Rumyantsev
    • 1
    • 3
  • Denis M. Kamorin
    • 1
  • Alexey P. Sivokhin
    • 1
    • 4
  1. 1.Nizhny Novgorod State Technical UniversityNizhny NovgorodRussia
  2. 2.The Institute of Petroleum ChemistrySiberian Branch of the Russian Academy of SciencesTomskRussia
  3. 3.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  4. 4.Nizhny NovgorodRussia

Personalised recommendations