Structural and rheological properties of kappa (κ)-carrageenans covalently modified with cationic moieties

  • Rudy Covis
  • Jean-Paul Guegan
  • Jelena Jeftić
  • Mirjam Czjzek
  • Maud Benoit
  • Thierry Benvegnu


Cationized kappa-carrageenans containing 2-hydroxy-3-(trimethylammonium)propyl groups with various degrees of substitution (0.13–0.75) were synthesized by reaction of sulfated polysaccharides with 3-chloro-2-hydroxypropyltrimethyl ammonium chloride (QUAB 188) in alkaline solutions through the generation of the corresponding 2,3-epoxy reagent in situ. The structure of the modified algal polysaccharides was characterized without any further treatment or after methanolysis and/or enzymatic depolymerization, by means of spectroscopic tools (FT-IR, NMR, Mass spectrometry) and high-performance size exclusion chromatography (HPSEC). Significant differences in the rheological properties of these cationized kappa-carrageenans have been found depending on the DS values and the presence of KCl salt. Despite their lower molecular weights in comparison with native polysaccharides, cationized kappa-carrageenans with a DS of 0.75 exhibited high viscosity and gelling behaviors mediated by the high density of quaternary ammonium groups.


(κ)-carrageenan Cationized polysaccharide NMR spectroscopy Chemical and enzymatic depolymerization Rheological behavior 



This work benefited from the support of the French Government run by the National Research Agency and with regards to the investment expenditure programme IDEALG ANR-10-BTBR-04. We are greateful to the PRISM core facility (Biogenouest©, UMS, Biosit, Université de Rennes 1- Campus de Villejean- 35043 Rennes cedex, France) for its technical support.

Supplementary material

10965_2016_971_MOESM1_ESM.doc (133 kb)
ESM 1 (DOC 133 kb)


  1. 1.
    Balboa EM, Conde E, Moure A, Falque E, Domingue H (2013) In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem 138:1764–1785CrossRefGoogle Scholar
  2. 2.
    Gómez-Ordóñez E, Jiménez-Escrig A, Rupérez P (2014) Bioactivity of sulfated polysaccharides from the edible red seaweed Mastocarpus stellatus. Bioactive Carbohydrates and Dietary Fibre 3:29–40CrossRefGoogle Scholar
  3. 3.
    Pereira L, de Velde FV (2011) Portuguese carrageenophytes: Carrageenan composition and geographic distribution of eight species (Gigartinales, Rhodophyta). Carbohydr Polym 84:614–623CrossRefGoogle Scholar
  4. 4.
    Peña-Rodríguez A, Mawhinney TP, Ricque-Marie D, Cruz-Suárez LE (2011) Chemical composition of cultivated seaweed Ulva clathrata (Roth) C, Agardh. Food Chem 129:491–498CrossRefGoogle Scholar
  5. 5.
    Samarakoon K, Jeon YJ (2012) Bio-functionalities of proteins derived from marine algae - A review. Food Res Int 48:948–960CrossRefGoogle Scholar
  6. 6.
    Cruz-Suárez LE, León A, Peña-Rodríguez A, Rodríguez-Peña G (2010) Shrimp /Ulva co-culture: A sustainable alternative to diminish the need for artificial feed and improve shrimp quality.”. Aquaculture 301:64–68CrossRefGoogle Scholar
  7. 7.
    Liu J, Zhan X, Wan J, Wang Y, Wang C (2015) Review for carrageenan-based pharmaceutical biomaterials: Favourable physical features versus adverse biological effects. Carbohydr Polym 121:27–36CrossRefGoogle Scholar
  8. 8.
    Cosenza VA, Navarro DA, Fissore EN, Rojas AM, Stortz CA (2014) Chemical and rheological characterization of the carrageenans from Hypnea musciformis (Wulfen) Lamoroux Vanina. Carbohydr Polym 102:780–789CrossRefGoogle Scholar
  9. 9.
    Jiao Yu G, Zhang J, Ewart HS (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–223CrossRefGoogle Scholar
  10. 10.
    Wijesekara I, Kim SK (2011) Anticoagulant effect of marine algae. Adv Food Nutr Res 64:235–244CrossRefGoogle Scholar
  11. 11.
    Wijesekara I, Pangestuti R, Kim S (2011) Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 84:14–21CrossRefGoogle Scholar
  12. 12.
    Pereira MG, Benevides NMB, Melo MRS, Valente AP, Melo FR, Mourão PAS (2005) Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action? Carbohydr Res 340:2015–2023CrossRefGoogle Scholar
  13. 13.
    Mangione MR, Giacomazza D, Bulone D, Martorana V, Biario PL (2003) Thermoreversible gelation of κ-carrageenan: relation between conformational transition and aggregation. Biophys Chem 104:95–105CrossRefGoogle Scholar
  14. 14.
    Lai VME, Wong PAL, Lii CY (2000) Effects of cation properties on sol-gel transition and gel properties of κ-carrageenan. J Food Sci 65:1332–1337CrossRefGoogle Scholar
  15. 15.
    Campo VL, Kawano DF, da Silva Jr DB, Carvalho I (2009) Carrageenans: Biological properties, chemical modifications and structural analysis–A review. Carbohydr Polym 77:167–180CrossRefGoogle Scholar
  16. 16.
    Guiseley KB Modified kappa-carrageenan (1978) US Patent 4096327Google Scholar
  17. 17.
    Prado HJ, Matulewicz MC (2014) Cationization of polysaccharides: A path to greener derivatives with many industrial applications. Eur Polym J 52:53–75CrossRefGoogle Scholar
  18. 18.
    Klimaviciute R, Riauka A, Zemaitaitis A (2007) The binding of anionic dyes by cross-linked cationic starches. J Polym Res 14:67–73CrossRefGoogle Scholar
  19. 19.
    Prado HJ, Matulewicz MC, Bonelli PR, Cukierman AL (2011) Studies on the cationization of agarose. Carbohydr Res 346:311–321CrossRefGoogle Scholar
  20. 20.
    Barahona T, Prado HJ, Bonelli PR, Cukierman AL, Fissore EL, Gerschenson LN (2015) Matulewicz MC. Cationization of kappa- and iota-carrageenan – Characterization and properties of amphoteric polysaccharide Carbohydr Polym 126:70–77Google Scholar
  21. 21.
    Haack V, Heinze T, Kulicke WM, Oelmeyer G (2002) Starch derivatives of high degree of functionalization, 8. Synthesis and flocculation behavior of cationic starch polyelectrolytes. Macromol Mater Eng 287:495–502CrossRefGoogle Scholar
  22. 22.
    Heinze T, Haak V, Rensing S (2004) Starch derivatives of high degree of functionalization, 7. Preparation of cationic 2-hydroxypropyltrimethylammonium chloride starches. Starch/Starke 56:288–296CrossRefGoogle Scholar
  23. 23.
    Kavaliauskaite R, Klimaviciute R, Zemaitaitis A (2008) Factors influencing production of cationic starches. Carbohydr Polym 73:665–675CrossRefGoogle Scholar
  24. 24.
    Kuo WY, Lai HM (2009) Effects of reaction conditions on the physicochemical properties of cationic starch studied by RSM. Carbohydr Polym 75:627–635CrossRefGoogle Scholar
  25. 25.
    Ren JL, Sun RC, Liu CF, Lin L, He BH (2007) Synthesis and characterization of novel cationic SCB hemicelluloses with a low degree of substitution. Carbohydr Polym 67:347–357CrossRefGoogle Scholar
  26. 26.
    Wang PL, Wu XL, Dong-hua X, Kun X, Ying T, Xi-bing D, Wen-bo L (2009) Preparation and characterization of cationic corn starch with a high degree of substitution in dioxane–THF–water media. Carbohydr Res 344:851–855CrossRefGoogle Scholar
  27. 27.
    Sableviciene D, Klimaviciute R, Bendoraitiene J, Zemaitaitis A (2005) Flocculation properties of high-substituted cationic starches. Colloids Surf A Physicochem Eng Asp 259:23–30CrossRefGoogle Scholar
  28. 28.
    Zhang M, Ju BZ, Zhang SF, Ma W, Yang JZ (2007) Synthesis of cationic hydrolyzed starch with high DS by dry process and use in salt-free dyeing. Carbohydr Polym 69:123–129CrossRefGoogle Scholar
  29. 29.
    van de Velde F, Knutsen SH, Usov AI, Rollema HS, Cerezo AS (2002) 1H and 13C high resolution NMR spectroscopy of carrageenans: applications in research and industry. Trends Food Sci Tech 13:73–92CrossRefGoogle Scholar
  30. 30.
    Usov AI (1998) Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocoll 12:301–308CrossRefGoogle Scholar
  31. 31.
    Roberts MA, Quemener B (1999) Measurement of carrageenans in food: challenges, progress, and trends in analysis. Trends in Food Sci Tech 10:169–181CrossRefGoogle Scholar
  32. 32.
    Pelletier E, Viebke C, Meadows J, Williams PA (2001) Solution Rheology of κ-carrageenan in the ordered and disordered conformations. Biomacromolecules 2:946–951CrossRefGoogle Scholar
  33. 33.
    Garrec DA, Norton IT (2012) Undertanding fluid gel formation and properties. J Food Eng 112:175–182CrossRefGoogle Scholar
  34. 34.
    Yuryev VP, Blumenfeld AL, Braudo EE, Tolstoguszov VB (1991) Interactions of sodium potassium ions with κ-carrageenan. Colloid Polym Sci 269:850–854CrossRefGoogle Scholar
  35. 35.
    Brenner T, Tuvikene R, Parker A, Nishinari K (2014) Rheology and structure of mixed kappa-carrageenan/iota-carrageenan gels. Food Hydrocoll 39:272–279CrossRefGoogle Scholar
  36. 36.
    Ikeda S, Nishinari K (2001) “Weak Gel”-Type Rheological Properties of Aqueous Dispersions of Nonaggregated κ-Carrageenan Helices. J Agric Food Chem 49:4436–4441CrossRefGoogle Scholar
  37. 37.
    Thrimawithana TR, Young S, Dunstan DE, Alany RG (2010) Texture and rheological characterization of kappa and iota carrageenan in the presence of counter ions. Carbohydr Polym 82:69–77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Rudy Covis
    • 1
    • 2
  • Jean-Paul Guegan
    • 1
    • 2
  • Jelena Jeftić
    • 1
    • 2
  • Mirjam Czjzek
    • 3
    • 4
  • Maud Benoit
    • 5
  • Thierry Benvegnu
    • 1
  1. 1.Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226RennesFrance
  2. 2.Université Européenne de Bretagne (UEB)RennesFrance
  3. 3.UPMC Université Paris 6, UMR 7139 Végétaux marins et Biomolécules, LIA DIAMSRoscoffFrance
  4. 4.CNRS, UMR 7139 Végétaux marins et Biomolécules, LIA DIAMSRoscoffFrance
  5. 5.Centre d’étude et de Valorisation des AlguesPleubianFrance

Personalised recommendations