Advertisement

High molecular weight poly(p-arylene sulfide ketone): synthesis and membrane-forming properties

  • Guang-ming Yan
  • Zhi-min Li
  • Gang Zhang
  • Hao-hao Ren
  • Shu-shan Yuan
  • Yan Li
  • Jie Yang
Original Paper

Abstract

High-molecular-weight poly(p-arylene sulfide ketone) (PPSK) was prepared by nucleophilic substitution reaction of 4,4’-diflurobenzophenone (DFBP) and sodium sulfide in the compound solvents of diphenyl sulfone (DPS) and 1,3-dimethyl-2-imidazolidinone (DMI) with catalysts under elevated temperature. The inherent viscosity (ηint) of the PPSK synthesized was 0.703 dl/g. PPSK was characterized by Fourier-transform infrared spectroscopy, elemental analysis, x-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. It was found that the polymer had excellent thermal properties: glass transition temperature (Tg) was 142.8 °C, melting temperature (Tm) was 362.3 °C. Under nitrogen atmosphere, 5 % (T5%) and 10 % (T10%) weight-loss temperatures were about 498.5 °C and 526.2 °C, respectively, while in the air the T5% and T10% were about 517 °C and 535.8 °C, respectively. The PPSK was found to be a semi-crystalline polymer, as confirmed by XRD. The polymer was insoluble in any solvent except concentrated sulfuric acid at room temperature. A series of the PPSK separating membranes were prepared by dissolving PPSK to concentrated sulfuric acid. The fluxes and the porosities of the separating membranes were in the range of 230–43 L/(m2 · h) and 77.7-84.7 %, respectively. At the same time, these separating membranes showed moderate tensile strength of 1.02-1.88 MPa.

Keywords

Synthesis Membrane-forming property Properties PPSK 

References

  1. 1.
    Hergenrother PM (2003) High Perform Polym 15:3–45Google Scholar
  2. 2.
    Stoeffler K, Andjelic S, Legros N, Roberge J, Schougaard SB (2013) Comput Sci Technol 84:65–71CrossRefGoogle Scholar
  3. 3.
    Lu SX, Cebe PJ (1977) J Therm Anal 49:525–533CrossRefGoogle Scholar
  4. 4.
    Edmonds JT, Hill (1977) US patent 3354129Google Scholar
  5. 5.
    Campbell RW, Edmonds JT (1977) US patent 4038259Google Scholar
  6. 6.
    Krefeld KI, Korschenbroich JM (1981) US patent 4303781Google Scholar
  7. 7.
    Schmidt M, Tresper E, Alewelt W, Dorf EU (1991) US patent 5037952Google Scholar
  8. 8.
    Wang HD, Yang J, Long SR, Du ZY, Chen YR (2003) Polym Mater Sci Eng 19(3):54–57Google Scholar
  9. 9.
    Xu SX, Yang J, Long SR, Chen YR, Li GX (2005) Polym Bull 54:251–261CrossRefGoogle Scholar
  10. 10.
    Wang HD, Yang J, Long SR (2004) Polym Degrad Stab 83(2):229CrossRefGoogle Scholar
  11. 11.
    Bobsein RL (1989) US patent 4808698Google Scholar
  12. 12.
    Liu Y, Bhatnagar A, Ji Q, Riffle JS, McGrath JE, Geibel JF, Kashiwagi T (2000) Polymer 41:5137–5146CrossRefGoogle Scholar
  13. 13.
    Wang XJ, Yu QQ, Huang HM, Yang J, Li GX (2010) Polym Mater Sci Eng 26(10):140–143Google Scholar
  14. 14.
    Li ZM, Zhang G, Li Y, Yang J (2015) J Polym Res 22:75CrossRefGoogle Scholar
  15. 15.
    Zhang G, Yuan SS, Li ZM, Long SR, Yang J (2014) RSC Adv 4:23191–23201CrossRefGoogle Scholar
  16. 16.
    Zhang G, Ren HH, Li DS, Long SR, Yang J (2013) Polymer 54:601–606CrossRefGoogle Scholar
  17. 17.
    Zhang G, Li DS, Huang GS, Wang XJ, Long SR, Yang J (2011) React Funct Polym 71:775–781CrossRefGoogle Scholar
  18. 18.
    Yoshikatsu S, Takashi K, Yutaka K (1997) EP patent 0293115Google Scholar
  19. 19.
    Gaughan RG (1987) US patent 4716212Google Scholar
  20. 20.
    Feasey RG, England K (1974) US patent 3819582Google Scholar
  21. 21.
    Geibel JF, Okla B (1992) US patent 5109102Google Scholar
  22. 22.
    Tomagou S, Kato T, Ogawara K (1992) US patent 5097003Google Scholar
  23. 23.
    Yoshikatsu S, Ken K (1995) EP patent 0296877Google Scholar
  24. 24.
    Toshiya M (1991) EP patent 0347062Google Scholar
  25. 25.
    Durvasula VR, Stuber FA, Bhattacharjee D (1989) J Polym Sci A Polym Chem 27:661–669CrossRefGoogle Scholar
  26. 26.
    Senn DR (1994) J Polym Sci A Polym Chem 30:1175–1183CrossRefGoogle Scholar
  27. 27.
    Kim MS, Kim DJ, Jeon IR, Seo KH (2000) J Appl Polym Sci 76:1329–1337CrossRefGoogle Scholar
  28. 28.
    Wang YL, Zhang G, Zhang ML, Fan Y, Liu BY, Yang J (2012) Chin J Polym Sci 20(3):370–377CrossRefGoogle Scholar
  29. 29.
    Nowak KM (1989) Desalination 71(2):83–95CrossRefGoogle Scholar
  30. 30.
    Li YF, Su YL, Zhao XT, He X, Zhang RN, Zhao JJ, Fan XC, Jiang ZY (2014) ACS Appl Mater Interfaces 6:5548–5557CrossRefGoogle Scholar
  31. 31.
    Zhou C, Hou ZC, Lu XF, Liu ZY, Bian XK, Shi LQ, Li L (2010) Ind Eng Chem Res 49:9988–9997CrossRefGoogle Scholar
  32. 32.
    Tarboush BJ, Rana D, Matsuura T, Arafat HA, Narbaitz RM (2008) J Membr Sci 325:166–175CrossRefGoogle Scholar
  33. 33.
    Qu P, Tang HW, Gao Y, Zhang LP, Wang SQ (2010) Bioresour 5(4):2323–2336Google Scholar
  34. 34.
    Colquhoun HM, Lewis DF, Williams DJ (1999) Polymer 40:5415–5420CrossRefGoogle Scholar
  35. 35.
    Yin WY, Ma HX, Ren JH, Ren ML, Zhang HM, Yang XZ (1998) Eng Plast Appl 26(7):18–20Google Scholar
  36. 36.
    Sun MP, Su YL, Mu CX, Jiang ZY (2010) Ind Eng Chem Res 49:790–796CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Materials Science & Technology, Analytical & Testing CenterSichuan UniversityChengduPeople’s Republic of China
  2. 2.College of Polymer Materials Science and Engineering of Sichuan UniversityChengduPeople’s Republic of China
  3. 3.State Key Laboratory of Polymer Materials Engineering (Sichuan University)ChengduPeople’s Republic of China

Personalised recommendations