Tuning the HOMO energy levels in quinoline and biquinoline based donor-acceptor polymers

  • Manisha Tomar
  • A. Z. Ashar
  • K. S. Narayan
  • Klaus Müllen
  • Josemon Jacob
Original Paper


Four donor-acceptor type polymers based on quinoline and biquinoline have been synthesized by Pd catalyzed direct C-H (hetero)arylation reaction. Polymers P1 and P2 are alternate copolymers of thiophene-benzothiadiazole-thiophene (TBTT) unit with quinoline and biquinoline unit, respectively. P3 is a random copolymer containing cyclopentadithiophene (CPDT), benzothiadiazole and quinoline moieties in the backbone whereas P4 contains CPDT unit with randomly distributed benzothiadiazole and biquinoline units. All the polymers show good thermal stability and solubility in common organic solvents. CPDT based polymers P3 and P4 exhibit higher absorbance maxima, higher lying Highest Occupied Molecular Orbital (HOMO) energy levels and smaller band gap as compared to thiophene based polymers P1 and P2 as a result of better electron-donating ability of the former leading to stronger intramolecular charge transfer. Also, quinoline based polymers P1 and P3 show a red-shift in the absorbance maxima compared to biquinoline based polymers P2 and P4, respectively due to non-planar transoid conformation of the two quinoline rings in the biquinoline unit. It is found that the use of N-heterocycle based comonomers allows the tuning of the HOMO level over a remarkably wide range (~0.8 eV). Additionally, the use of quinoline or biquinoline along the conjugated chain leads to deeper lying HOMO levels suggesting good oxidative stability for this class of materials.


Quinoline Biquinoline Donor-acceptor Cyclopentadithiophene 2,1,3-benzothiadiazole Optical properties 



The authors acknowledge the Department of Science and Technology, India (SB/S1/OC-12/2013) and Max Planck Society, Germany for generous financial support. M.T. acknowledges a research fellowship from the Indian Institute of Technology Delhi, India.


  1. 1.
    Lu F, Nakanishi T (2015) Alkyl-π engineering in state control toward versatile optoelectronic soft materials. Sci Technol Adv Mater 16(1):14805CrossRefGoogle Scholar
  2. 2.
    Jou JH, Kumar S, Agrawal A, Li TH, Sahoo S (2015) Approaches for fabricating high efficiency organic light emitting diodes. J Mater Chem C 3(13):2974–3002CrossRefGoogle Scholar
  3. 3.
    Kola S, Sinha J, Katz HE (2012) Organic transistors in the new decade: Toward n-channel, printed, and stabilized devices. J Polym Sci B Polym Phys 50(15):1090–1120CrossRefGoogle Scholar
  4. 4.
    Ragoussi M-E, Torres T (2015) New generation solar cells: concepts, trends and perspectives. Chem Commun 51(19):3957–3972CrossRefGoogle Scholar
  5. 5.
    Zhou H, Yang L, Stoneking S, You W (2010) A weak donor-strong acceptor strategy to design ideal polymers for organic solar cells. ACS Appl Mater Interfaces 2:1377–1383CrossRefGoogle Scholar
  6. 6.
    Ajayaghosh A (2003) Donor-acceptor type low band gap polymers: polysquaraines and related systems. Chem Soc Rev 32:181–191CrossRefGoogle Scholar
  7. 7.
    Roncali J (1997) Synthetic principles for bandgap control in linear π-conjugated systems. Chem Rev 97:173–205CrossRefGoogle Scholar
  8. 8.
    Bundgaard E, Krebs FC (2007) Low band gap polymers for organic Photovoltaics. Sol Energy Mater Sol Cells 91:954–985.CrossRefGoogle Scholar
  9. 9.
    Bundgaard E, Krebs FC (2006) Low-band-gap conjugated polymers based on thiophene, benzothiadiazole, and benzobis(thiadiazole). Macromolecules 39(8):2823–2831CrossRefGoogle Scholar
  10. 10.
    Chu TY, Lu J, Beaupre S, Zhang Y, Pouliot J-R, Wakim S, Zhou J, Leclerc M, Li Z, Ding J, Tao Y (2011) Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3 %. J Am Chem Soc 133:4250–4253CrossRefGoogle Scholar
  11. 11.
    Amb CM, Chen S, Graham KR, Subbiah J, Small CE, So F, Reynolds JR (2011) Dithienogermole as a fused electron donor in bulk heterojunction solar cells. J Am Chem Soc 133:10062–10065CrossRefGoogle Scholar
  12. 12.
    Zhou H, Yang L, Stuart AC, Price SC, Liu S, You W (2011) Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7 % efficiency. Angew Chem Int Ed Engl 50:2995–2998CrossRefGoogle Scholar
  13. 13.
    Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal Quantum efficiency approaching 100 %. Nat Photonics 3:297–303CrossRefGoogle Scholar
  14. 14.
    Price SC, Stuart AC, Yang L, Zhou H, You W (2011) Fluorine substituted conjugated polymer of medium band gap yields 7 % efficiency in polymer-fullerene solar cells. J Am Chem Soc 133:4625–4631CrossRefGoogle Scholar
  15. 15.
    Li Y, Xue L, Li H, Li Z, Xu B, Wen S, Tian W (2009) Energy level and molecular structure engineering of conjugated donor − acceptor copolymers for photovoltaic applications. Macromolecules 42(13):4491–4499CrossRefGoogle Scholar
  16. 16.
    Chen GY, Cheng YH, Chou YJ, Su MS, Chen CM, Wei KH (2011) Crystalline conjugated polymer containing fused 2,5-di(thiophen-2-yl)thieno[2,3-b]thiophene and thieno[3,4-c]pyrrole-4,6-dione units for bulk heterojunction solar cells. Chem Commun 47(17):5064–5066CrossRefGoogle Scholar
  17. 17.
    Jiang JM, Yang PA, Hsieh TH, Wei KH (2011) Crystalline low-band gap polymers comprising thiophene and 2,1,3-benzooxadiazole units for bulk heterojunction solar cells. Macromolecules 44(23):9155–9163CrossRefGoogle Scholar
  18. 18.
    Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497–500CrossRefGoogle Scholar
  19. 19.
    Biniek L, Chochos CL, Leclerc N, Hadziioannou G, Kallitsis JK, Bechara R, Leveque P, Heiser T (2009) A [3,2-b]thienothiophene-alt-benzothiadiazole copolymer for photovoltaic applications: design, synthesis, material characterization and device performances. J Mater Chem 19(28):4946–4951CrossRefGoogle Scholar
  20. 20.
    Ko S, Mondal R, Risko C, Lee JK, Hong S, McGehee MD, Brédas J-L, Bao Z (2010) Tuning the optoelectronic properties of vinylene-linked donor − acceptor copolymers for organic photovoltaics. Macromolecules 43(16):6685–6698CrossRefGoogle Scholar
  21. 21.
    Liang F, Lu J, Ding J, Movileanu R, Tao Y (2009) Design and synthesis of alternating regioregular oligothiophenes/benzothiadiazole copolymers for organic solar cells. Macromolecules 42:6107–6114CrossRefGoogle Scholar
  22. 22.
    Wu WC, Liu CL, Chen WC (2006) Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications. Polymer 47(2):527–538CrossRefGoogle Scholar
  23. 23.
    El Shehawy AA, Abdo NI, El Barbary AA, Lee JS (2011) Alternating copolymers based on 2,1,3-benzothiadiazole and hexylthiophene: positioning effect of hexyl chains on the photophysical and electrochemical properties. Eur J Org Chem 25:4841–4852Google Scholar
  24. 24.
    Botiz I, Schaller RD, Verduzco R, Darling SB (2011) Optoelectronic properties and charge transfer in donor–acceptor all-conjugated diblock copolymers. J Phys Chem C 115(18):9260–9266CrossRefGoogle Scholar
  25. 25.
    Chen MH, Hou J, Hong Z, Yang G, Sista S, Chen LM, Yang Y (2009) Efficient polymer solar cells with thin active layers based on alternating polyfluorene copolymer/fullerene bulk heterojunctions. Adv Mater 21:4238–4242CrossRefGoogle Scholar
  26. 26.
    Shi F, Fang G, Liang F, Wang L, Mu Z, Zhang X, Xie Z, Su Z (2010) Broad absorbing low-bandgap polythiophene derivatives incorporating separate and content-tunable benzothiadiazole and carbazole moieties for polymer solar cells. Eur Polym J 46:1770–1777CrossRefGoogle Scholar
  27. 27.
    Tamilavan V, Song M, Jin S-H, Hyun MH (2011) Synthesis of conjugated polymers with broad absorption bands and photovoltaic properties as bulk heterojuction solar cells. Polymer 52(11):2384–2390CrossRefGoogle Scholar
  28. 28.
    Biniek L, Chochos CL, Hadziioannou G, Leclerc N, Lévêque P, Heiser T (2010) Electronic properties and photovoltaic performances of a series of oligothiophene copolymers incorporating both thieno[3,2-b]thiophene and 2,1,3-benzothiadiazole moieties. Macromol Rapid Commun 31(7):651–656CrossRefGoogle Scholar
  29. 29.
    Padhy H, Huang JH, Sahu D, Patra D, Kekuda D, Chu CW, Lin HC (2010) Synthesis and applications of low-bandgap conjugated polymers containing phenothiazine donor and various benzodiazole acceptors for polymer solar cells. J Polym Sci, Part A: Polym Chem 48:4823–4834CrossRefGoogle Scholar
  30. 30.
    Kanbara T, Saito N, Yamamoto T, Kubota K (1991) Preparation and properties of poly(quinolinediyl)s and poly(isoquinoline-1,4-diyl) with new pi-conjugation systems. Macromolecules 24(21):5883–5885CrossRefGoogle Scholar
  31. 31.
    Saito N, Kanbara T, Nakamura Y, Yamamoto T, Kubota K (1994) Electrochemical and chemical preparation of linear pi-conjugated poly(quinoline-2,6-diyl) using nickel complexes and electrochemical properties of the polymer. Macromolecules 27(3):756–761CrossRefGoogle Scholar
  32. 32.
    Saito N, Yamamoto T (1995) Preparation of new n-type conducting poly(arylene)s by organometallic process and their electrical and optical properties. Synth Met 69(1–3):539–540CrossRefGoogle Scholar
  33. 33.
    Zhang X, Shetty AS, Jenekhe SA (1999) Electroluminescence and photophysical properties of polyquinolines. Macromolecules 32(22):7422–7429CrossRefGoogle Scholar
  34. 34.
    Agrawal AK, Jenekhe SA (1996) Electrochemical properties and electronic structures of conjugated polyquinolines and polyanthrazolines. Chem Mater 8(2):579–589CrossRefGoogle Scholar
  35. 35.
    Zhang X, Shetty AS, Jenekhe SA (1998) Efficient electroluminescence from a new n-type conjugated polyquinoline. Acta Polym 49(1):52–55CrossRefGoogle Scholar
  36. 36.
    Kim JL, Kim JK, Cho HN, Kim DY, Kim CY, Hong SI (2000) New polyquinoline copolymers: synthesis, optical, luminescent, and hole-blocking/electron-transporting properties. Macromolecules 33(16):5880–5885CrossRefGoogle Scholar
  37. 37.
    Tomar M, Lucas NT, Kim H, Laquai F, Müllen K, Jacob J (2012) Facile synthesis of 5,8-linked quinoline-based copolymers. Polym Int 61(8):1318–1325CrossRefGoogle Scholar
  38. 38.
    Tomar M, Lucas NT, Gardiner MG, Muellen K, Jacob J (2012) Facile synthesis and coupling of functionalized isomeric biquinolines. Tetrahedron Lett 53(3):285–288CrossRefGoogle Scholar
  39. 39.
    Drozdov FV, Myshkovskaya EN, Susarova DK, Troshin PA, Fominykh OD, Balakina MY, Bakirov AV, Shcherbina MA, Choi J, Tondelier D (2013) Novel cyclopentadithiophene based D–A copolymers for organic photovoltaic cell applications. Macromol Chem Phys 214(19):2144–2156CrossRefGoogle Scholar
  40. 40.
    Pilgram K, Zupan M, Skiles R (1970) Bromination of 2,1,3-benzothiadiazoles. J Heterocycl Chem 7(3):629–633CrossRefGoogle Scholar
  41. 41.
    Kim J, Yun MH, Anant P, Cho S, Jacob J, Kim JY, Yang C (2011) Copolymers comprising 2,7-carbazole and bis-benzothiadiazole units for bulk-heterojunction solar cells. Chem Eur J 17(51):14681–14688CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Manisha Tomar
    • 1
  • A. Z. Ashar
    • 2
  • K. S. Narayan
    • 2
  • Klaus Müllen
    • 3
  • Josemon Jacob
    • 1
  1. 1.Centre for Polymer Science and EngineeringIndian Institute of TechnologyNew DelhiIndia
  2. 2.Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  3. 3.Synthetic Chemistry GroupMax Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations