High-density polyethylene/halloysite nanocomposites: morphology and rheological behaviour under extensional and shear flow

  • Vishwa Pratap Singh
  • K. K. Vimal
  • G. S. Kapur
  • Shashikant Sharma
  • Veena Choudhary
Original Paper


The paper describes the preparation of High Density Polyethylene [HDPE]/Halloysite Nanotube [HNT] nanocomposites by melt compounding HDPE with varying amounts of HNTs (ranging from 1 to 10 % w/w) in the absence and presence of MA-g-HDPE as compatibiliser using co-rotating twin screw extruder. The effect of HNT loading and compatibiliser amount on morphology and rheological properties was investigated. Melt strength and drawability were determined using Rheotens whereas extensional viscosity was calculated from (i) Wagner’s master curve (using Rheotens data) and (ii) modified Cogswell method (using convergent flow analysis from capillary rheometer data). In HDPE/HNT composites, melt extensional properties (melt strength, drawability and extensional viscosity) increased slightly with increase in HNT concentration up to 5 % w/w followed by a decrease as HNT concentration was increased to 10 % w/w. On the other hand all these properties enhanced significantly in the presence of compatibiliser i.e. in HDPE/MA-g-HDPE/HNTs nanocomposites. Rheological studies form capillary rheometer showed marginal increase in the high shear viscosity at 10 % w/w filler loading. Both Complex viscosity and storage modulus in oscillatory rheometry were highest for nanocomposites prepared using 10 % w/w HNT and reduced slightly after incorporation of compatibiliser.


HDPE Halloysite nanotubes HDPE-g-MA Morphology Rheology 



The authors thank Ministry of Human Resource Development (MHRD), India for providing financial assistance to one of the authors Mr. Vishwa Pratap Singh. The authors also thank the Director IOCL R&D center for providing the characterization facilities.


  1. 1.
    Ahmad AA, Al-Juhani AA, Thomas S, De SK, Atieh MA (2013) Effect of modified and nonmodified carbon nanotubes on the rheological behavior of high density polyethylene nanocomposite. J Nanomater 2013:12. doi: 10.1155/2013/731860 CrossRefGoogle Scholar
  2. 2.
    Osman MA, Atallah A (2006) Effect of the particle size on the viscoelastic properties of filled polyethylene. Polymer 47(7):2357–2368. doi: 10.1016/j.polymer.2006.01.085 CrossRefGoogle Scholar
  3. 3.
    Tang Y, Yang C, Gao P, Ye L, Zhao C, Lin W (2011) Rheological study on high-density polyethylene/organoclay composites. Polym Eng Sci 51(1):133–142. doi: 10.1002/pen.21790 CrossRefGoogle Scholar
  4. 4.
    Vega JF, Martínez-Salazar J, Trujillo M, Arnal ML, Müller AJ, Bredeau S, Dubois P (2009) Rheology, processing, tensile properties, and crystallization of polyethylene/carbon nanotube nanocomposites. Macromolecules 42(13):4719–4727. doi: 10.1021/ma900645f CrossRefGoogle Scholar
  5. 5.
    Zhong Y, De Kee D (2005) Morphology and properties of layered silicate-polyethylene nanocomposite blown films. Polym Eng Sci 45(4):469–477. doi: 10.1002/pen.20306 CrossRefGoogle Scholar
  6. 6.
    Durmuş A, Woo M, Kaşgöz A, Macosko CW, Tsapatsis M (2007) Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: Structural, mechanical and barrier properties. Eur Polym J 43(9):3737–3749. doi: 10.1016/j.eurpolymj.2007.06.019 CrossRefGoogle Scholar
  7. 7.
    Xu Y, Fang Z, Tong L (2005) On promoting intercalation and exfoliation of bentonite in high-density polyethylene by grafting acrylic acid. J Appl Polym Sci 96(6):2429–2434. doi: 10.1002/app.21708 CrossRefGoogle Scholar
  8. 8.
    Minkova L, Peneva Y, Tashev E, Filippi S, Pracella M, Magagnini P (2009) Thermal properties and microhardness of HDPE/clay nanocomposites compatibilized by different functionalized polyethylenes. Polym Test 28(5):528–533. doi: 10.1016/j.polymertesting.2009.04.001 CrossRefGoogle Scholar
  9. 9.
    Picard E, Vermogen A, Gérard JF, Espuche E (2008) Influence of the compatibilizer polarity and molar mass on the morphology and the gas barrier properties of polyethylene/clay nanocomposites. J Polym Sci B Polym Phys 46(23):2593–2604. doi: 10.1002/polb.21584 CrossRefGoogle Scholar
  10. 10.
    Mohamadi M, Garmabi H, Keshavarzi F (2014) Structural characterization of high-density polyethylene nanocomposites: effect of compatibilizer type and high aspect ratio organoclay platelets. Polym Bull 71(10):2709–2731. doi: 10.1007/s00289-014-1219-x CrossRefGoogle Scholar
  11. 11.
    Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59(5):574–582. doi: 10.1002/pi.2754 Google Scholar
  12. 12.
    Frost RL, Shurvell HF (1997) Raman microprobe spectroscopy of halloysite. Clay Clay Miner 45(1):68–72CrossRefGoogle Scholar
  13. 13.
    Du M, Guo B, Wan J, Zou Q, Jia D (2010) Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene. J Polym Res 17(1):109–118. doi: 10.1007/s10965-009-9296-5 CrossRefGoogle Scholar
  14. 14.
    Du M, Guo B, Jia D (2006) Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur Polym J 42(6):1362–1369. doi: 10.1016/j.eurpolymj.2005.12.006 CrossRefGoogle Scholar
  15. 15.
    Lecouvet B, Sclavons M, Bourbigot S, Devaux J, Bailly C (2011) Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: structure and properties. Polymer 52(19):4284–4295. doi: 10.1016/j.polymer.2011.07.021 CrossRefGoogle Scholar
  16. 16.
    Ning N-y, Q-j Y, Luo F, Zhang Q, Du R, Fu Q (2007) Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer 48(25):7374–7384. doi: 10.1016/j.polymer.2007.10.005 CrossRefGoogle Scholar
  17. 17.
    Lecouvet B, Bourbigot S, Sclavons M, Bailly C (2012) Kinetics of the thermal and thermo-oxidative degradation of polypropylene/halloysite nanocomposites. Polym Degrad Stab 97(9):1745–1754. doi: 10.1016/j.polymdegradstab.2012.06.022 CrossRefGoogle Scholar
  18. 18.
    Jia Z, Luo Y, Guo B, Yang B, Du M, Jia D (2009) Reinforcing and flame-retardant effects of halloysite nanotubes on LLDPE. Polymer-Plastics Technol Eng 48(6):607–613. doi: 10.1080/03602550902824440 CrossRefGoogle Scholar
  19. 19.
    Handge UA, Hedicke-Höchstötter K, Altstädt V (2010) Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: influence of molecular weight on thermal, mechanical and rheological properties. Polymer 51(12):2690–2699. doi: 10.1016/j.polymer.2010.04.041 CrossRefGoogle Scholar
  20. 20.
    Liu M, Guo B, Du M, Cai X, Jia D (2007) Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 18(45):455703CrossRefGoogle Scholar
  21. 21.
    Rybiński P, Janowska G, Jóźwiak M, Pająk A (2012) Thermal properties and flammability of nanocomposites based on diene rubbers and naturally occurring and activated halloysite nanotubes. J Therm Anal Calorim 107(3):1243–1249. doi: 10.1007/s10973-011-1787-z CrossRefGoogle Scholar
  22. 22.
    Rybiński P, Janowska G (2013) Influence synergetic effect of halloysite nanotubes and halogen-free flame-retardants on properties nitrile rubber composites. Thermochim Acta 557:24–30. doi: 10.1016/j.tca.2013.01.030 CrossRefGoogle Scholar
  23. 23.
    Liu M, Zhang Y, Zhou C (2013) Nanocomposites of halloysite and polylactide. Appl Clay Sci 75–76:52–59. doi: 10.1016/j.clay.2013.02.019 CrossRefGoogle Scholar
  24. 24.
    Prashantha K, Lecouvet B, Sclavons M, Lacrampe MF, Krawczak P (2013) Poly(lactic acid)/halloysite nanotubes nanocomposites: structure, thermal, and mechanical properties as a function of halloysite treatment. J Appl Polym Sci 128(3):1895–1903. doi: 10.1002/app.38358 Google Scholar
  25. 25.
    Prashantha K, Lacrampe M, Krawczak P (2011) Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polymer Lett 5(4):295–307CrossRefGoogle Scholar
  26. 26.
    Khunova V, Kristof J, Kelnar I et al. (2013) The effect of halloysite modification combined with in situ matrix modifications on the structure and properties of polypropylene/halloysite nanocomposites. Express Polymer Lett 7 (5)Google Scholar
  27. 27.
    Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39(8):1498–1525. doi: 10.1016/j.progpolymsci.2014.04.004 CrossRefGoogle Scholar
  28. 28.
    Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112–113:75–93. doi: 10.1016/j.clay.2015.05.001 CrossRefGoogle Scholar
  29. 29.
    Ghijsels A, De Clippeleir J (1994) Melt strength behaviour of polypropylenes. Int Polym Process 9(3):252–257. doi: 10.3139/217.940252 CrossRefGoogle Scholar
  30. 30.
    Lau HC, Bhattacharya SN, Field GJ (1998) Melt strength of polypropylene: its relevance to thermoforming. Polym Eng Sci 38(11):1915–1923. doi: 10.1002/pen.10362 CrossRefGoogle Scholar
  31. 31.
    Muke S, Ivanov I, Kao N, Bhattacharya SN (2001) The melt extensibility of polypropylene. Polym Int 50(5):515–523. doi: 10.1002/pi.654 CrossRefGoogle Scholar
  32. 32.
    Sampers J, Leblans PJR (1988) An experimental and theoretical study of the effect of the elongational history on the dynamics of isothermal melt spinning. J Non-Newtonian Fluid Mech 30(2–3):325–342. doi: 10.1016/0377-0257(88)85032-8 CrossRefGoogle Scholar
  33. 33.
    Lacaze JM, Marin G, Monge P (1988) Elongational rheology of polyethylene melts—temporary network constitutive laws. Rheol Acta 27(5):540–545. doi: 10.1007/bf01329354 CrossRefGoogle Scholar
  34. 34.
    Micic P, Bhattacharya SN, Field G (1997) Rheological behaviour of LLDPE/LDPE blends under elongational deformation. Int Polym Process 12(2):110–115. doi: 10.3139/217.970110 CrossRefGoogle Scholar
  35. 35.
    Field GJ, Micic P, Bhattacharya SN (1999) Melt strength and film bubble instability of LLDPE/LDPE blends. Polym Int 48(6):461–466. doi: 10.1002/(sici)1097-0126(199906)48:6<461::aid-pi169>3.0.co;2-7 CrossRefGoogle Scholar
  36. 36.
    Kobayashi M, Takahashi T, Takimoto J-i, Koyama K (1996) Influence of glass beads on the elongational viscosity of polyethylene with anomalous strain rate dependence of the strain-hardening. Polymer 37(16):3745–3747. doi: 10.1016/0032-3861(96)00191-7 CrossRefGoogle Scholar
  37. 37.
    Kao N, Chandra A, Bhattacharya S (2002) Melt strength of calcium carbonate filled polypropylene melts. Polym Int 51(12):1385–1389. doi: 10.1002/pi.1057 CrossRefGoogle Scholar
  38. 38.
    Garcia-Rejon A, Meddad A, Turcott E, Carmel M (2002) Extrusion blow molding of long fiber reinforced polyolefins. Polym Eng Sci 42(2):346–364. doi: 10.1002/pen.10953 CrossRefGoogle Scholar
  39. 39.
    Garofalo E, Russo GM, Di Maio L, Incarnato L (2007) Study on the effect of uniaxial elongational flow on polyamide based nanocomposites. Macromol Symp 247(1):110–119. doi: 10.1002/masy.200750113 CrossRefGoogle Scholar
  40. 40.
    Su F-H, Yan J-H, Huang H-X (2011) Structure and melt rheology of long-chain branching polypropylene/clay nanocomposites. J Appl Polym Sci 119(2):1230–1238. doi: 10.1002/app.32800 CrossRefGoogle Scholar
  41. 41.
    McInerney LF, Kao N, Bhattacharya SN (2003) Melt strength and extensibility of talc-filled polypropylene. Polym Eng Sci 43(12):1821–1829. doi: 10.1002/pen.10154 CrossRefGoogle Scholar
  42. 42.
    Wagner MH, Bernnat A, Schulze V (1998) The rheology of the rheotens test. J Rheol (1978-present) 42(4):917–928. doi: 10.1122/1.550907 CrossRefGoogle Scholar
  43. 43.
    Cogswell FN (1972) Measuring the extensional rheology of polymer melts. Trans Soc Rheol (1957–1977) 16(3):383–403. doi: 10.1122/1.549257 CrossRefGoogle Scholar
  44. 44.
    Wang Q-J, Huang H-X (2013) Detecting extensional viscosity of polypropylene melt using the Rheotens test: a comparison between standard and steady state test modes. Polym Test 32(8):1400–1407. doi: 10.1016/j.polymertesting.2013.09.001 CrossRefGoogle Scholar
  45. 45.
    Wang KH, Xu M, Choi YS, Chung IJ (2001) Effect of aspect ratio of clay on melt extensional process of maleated polyethylene/clay nanocomposites. Polym Bull 46(6):499–505. doi: 10.1007/s002890170038 CrossRefGoogle Scholar
  46. 46.
    Lin G-G, Hu M-C (1997) Measurement of elongation viscosity for polymer melts by fiber spinning. Adv Polym Technol 16(3):199–207. doi: 10.1002/(sici)1098-2329(199723)16:3<199::aid-adv4>3.0.co;2-o CrossRefGoogle Scholar
  47. 47.
    Koo CM, Kim JH, Wang KH, Chung IJ (2005) Melt-extensional properties and orientation behaviors of polypropylene-layered silicate nanocomposites. J Polym Sci B Polym Phys 43(2):158–167. doi: 10.1002/polb.10564 CrossRefGoogle Scholar
  48. 48.
    Yeh J-T, Yao W-H, Chen C-C (2005) Polar and non-polar solvent permeation resistance of blow-molded bottles of polyethylene/blends of modified polyamide and polyamide 6 clay nanocomposite. J Polym Res 12(4):279–287. doi: 10.1007/s10965-004-5480-9 CrossRefGoogle Scholar
  49. 49.
    Cho JW, Paul DR (2001) Nylon 6 nanocomposites by melt compounding. Polymer 42(3):1083–1094. doi: 10.1016/S0032-3861(00)00380-3 CrossRefGoogle Scholar
  50. 50.
    McNally T, Pötschke P, Halley P, Murphy M, Martin D, Bell SEJ, Brennan GP, Bein D, Lemoine P, Quinn JP (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46(19):8222–8232. doi: 10.1016/j.polymer.2005.06.094 CrossRefGoogle Scholar
  51. 51.
    Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30(14):4097–4102. doi: 10.1021/ma960550a CrossRefGoogle Scholar
  52. 52.
    Lee YH, Park CB, Wang KH, Lee MH (2005) HDPE-clay nanocomposite foams blown with supercritical CO2. J Cell Plast 41(5):487–502. doi: 10.1177/0021955x05056964 CrossRefGoogle Scholar
  53. 53.
    Hoffmann B, Dietrich C, Thomann R, Friedrich C, Mülhaupt R (2000) Morphology and rheology of polystyrene nanocomposites based upon organoclay. Macromol Rapid Commun 21(1):57–61. doi: 10.1002/(sici)1521-3927(20000101)21:1<57::aid-marc57>3.0.co;2-e CrossRefGoogle Scholar
  54. 54.
    Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34(4):852–858. doi: 10.1021/ma000565f CrossRefGoogle Scholar
  55. 55.
    Lim YT, Park OO (2001) Phase morphology and rheological behavior of polymer/layered silicate nanocomposites. Rheol Acta 40(3):220–229. doi: 10.1007/s003970000126 CrossRefGoogle Scholar
  56. 56.
    Ali Mohsin ME, Arsad A, Gulrez SH, Muhamad Z, Fouad H, Alothman O (2015) Enhanced dispersion of carbon nanotubes in high density polyethylene matrix using secondary nanofiller and compatibilizer. Fibers Polym 16(1):129–137. doi: 10.1007/s12221-015-0129-3 CrossRefGoogle Scholar
  57. 57.
    Nandi S, Bose S, Mitra S, Ghosh AK (2013) Dynamic rheology and morphology of HDPE-fumed silica composites: effect of interface modification. Polym Eng Sci 53(3):644–650. doi: 10.1002/pen.23299 CrossRefGoogle Scholar
  58. 58.
    Jaggi H, Satapathy B, Ray A (2014) Viscoelastic properties correlations to morphological and mechanical response of HDPE/UHMWPE blends. J Polym Res 21(8):1–13. doi: 10.1007/s10965-014-0482-8 CrossRefGoogle Scholar
  59. 59.
    Ezzati P, Ghasemi I, Karrabi M, Azizi H (2008) Rheological behaviour of PP/EPDM blend: the effect of compatibilization. Iran Polym J 17:669–679Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Vishwa Pratap Singh
    • 1
  • K. K. Vimal
    • 2
  • G. S. Kapur
    • 2
  • Shashikant Sharma
    • 2
  • Veena Choudhary
    • 1
  1. 1.Centre for Polymer Science and EngineeringIndian Institute of TechnologyNew DelhiIndia
  2. 2.Indian Oil Corporation Ltd. Research & Development CentreFaridabadIndia

Personalised recommendations