Enhanced dielectric and piezoelectric properties of 0–3 PZT/PVDF composites

  • Vineet Tiwari
  • Geetika Srivastava
Original Paper


Flexible piezoelectric composite films of ([PZT/]x/[PVDF]1-x (x = 0, 0.1, 0.2, 0.3) with 0–3 connectivity were synthesized from 0.2 wt% Li2CO3 added PZT ceramic powders in the morphotropic phase boundary (MPB) and PVDF polymer by solution cast technique under optimized thermal processing conditions. It is seen that crystallinity and β phase are enhanced with the addition of Li in the composite films and as well as with the volume content of PZT ceramics in PVDF matrix, thereby resulting in superior dielectric and piezoelectric properties. It is also seen that reasonably high dielectric and piezoelectric properties are obtained for 30 % of the volume content of PZT ceramics as compared to 50 % of the volume content of ceramic in the polymer matrix as reported in literature and hence, the flexibility is better in these films.


Crystallinity Composites PVDF Dielectric properties Piezoelectric properties 


  1. 1.
    Zinck C, Pinceau D, Defay E, Delevoye E, Barbier D (2004) Development and characterization of membranes actuated by a PZT thin film for MEMS applications. Sensors Actuators A Phys 115(2):483–489CrossRefGoogle Scholar
  2. 2.
    Piekarski B, Dubey M, Zakar E, Polcawich R, Devoe D, Wickenden D (2002) Sol–gel PZT for MEMS applications. Integr Ferroelectr 42(1):25–37CrossRefGoogle Scholar
  3. 3.
    Harris N, Hill M, Torah R, Townsend R, Beeby S, White N, Ding J (2006) A multilayer thick-film PZT actuator for MEMs applications. Sensors Actuators A Phys 132(1):311–316CrossRefGoogle Scholar
  4. 4.
    Muralt P (2008) Recent progress in materials issues for piezoelectric MEMS. J Am Ceram Soc 91(5):1385–1396CrossRefGoogle Scholar
  5. 5.
    Cross LE (1996) Ferroelectric materials for electromechanical transducer applications. Mater Chem Phys 43(2):108–115CrossRefGoogle Scholar
  6. 6.
    Furukawa T (1997) Structure and functional properties of ferroelectric polymers. Adv Colloid Interf Sci 71:183–208CrossRefGoogle Scholar
  7. 7.
    Lü Z, Pu T, Huang Y, Meng X, Xu H (2015) Flexible ferroelectric polymer devices based on inkjet-printed electrodes from nanosilver ink. Nanotechnology 26(5):055202CrossRefGoogle Scholar
  8. 8.
    Mao D, Mejia I, Stiegler H, Gnade B, Quevedo-Lopez M (2011) Fatigue characteristics of poly (vinylidene fluoride-trifluoroethylene) copolymer ferroelectric thin film capacitors for flexible electronics memory applications. Org Electron 12(8):1298–1303CrossRefGoogle Scholar
  9. 9.
    Sharma M, Ranganatha S, Kalyani AK, Ranjan R, Madras G, Bose S (2014) Zirconia doped barium titanate induced electroactive β polymorph in PVDF-HFP: high energy density and dielectric properties. Mater Res Express 1(4):045301CrossRefGoogle Scholar
  10. 10.
    Sharma M, Singh MP, Srivastava C, Madras G, Bose S (2014) Poly (vinylidene fluoride)-based flexible and lightweight materials for attenuating microwave radiations. ACS Appl Mater Interfaces 6(23):21151–21160CrossRefGoogle Scholar
  11. 11.
    Sharma M, Madras G, Bose S (2014) Process induced electroactive β-polymorph in PVDF: effect on dielectric and ferroelectric properties. Phys Chem Chem Phys 16(28):14792–14799CrossRefGoogle Scholar
  12. 12.
    Skinner D, Newnham R, Cross L (1978) Flexible composite transducers. Mater Res Bull 13(6):599–607CrossRefGoogle Scholar
  13. 13.
    Newnham RE, Bowen L, Klicker K, Cross L (1980) Composite piezoelectric transducers. Mater Des 2(2):93–106CrossRefGoogle Scholar
  14. 14.
    Smith WA, Shaulov A, Auld B (1985) Tailoring the properties of composite piezoelectric materials for medical ultrasonic transducers. In: IEEE ultrasonics symposium. pp 642–647Google Scholar
  15. 15.
    Newnham R, Skinner D, Cross L (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13(5):525–536CrossRefGoogle Scholar
  16. 16.
    Venkatragavaraj E, Satish B, Vinod P, Vijaya M (2001) Piezoelectric properties of ferroelectric PZT-polymer composites. J Phys D Appl Phys 34(4):487CrossRefGoogle Scholar
  17. 17.
    Satish B, Sridevi K, Vijaya M (2002) Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique. J Phys D Appl Phys 35(16):2048CrossRefGoogle Scholar
  18. 18.
    Lallart M (2011) Ferroelectrics-material aspects. InTechGoogle Scholar
  19. 19.
    De-Qing Z, Da-Wei W, Jie Y, Quan-Liang Z, Zhi-Ying W, Mao-Sheng C (2008) Structural and electrical properties of PZT/PVDF piezoelectric nanocomposites prepared by cold-press and hot-press routes. Chin Phys Lett 25(12):4410CrossRefGoogle Scholar
  20. 20.
    Chen X-D, Yang D-B, Jiang Y-D, Wu Z-M, Li D, Gou F-J, Yang J-D (1998) 0–3 piezoelectric composite film with high d 33 coefficient. Sensors Actuators A Phys 65(2):194–196CrossRefGoogle Scholar
  21. 21.
    Han P, Pang S, Fan J, Shen X, Pan T (2013) Highly enhanced piezoelectric properties of PLZT/PVDF composite by tailoring the ceramic Curie temperature, particle size and volume fraction. Sensors Actuators A Phys 204:74–78CrossRefGoogle Scholar
  22. 22.
    Guan X, Zhang Y, Li H, Ou J (2013) PZT/PVDF composites doped with carbon nanotubes. Sensors Actuators A Phys 194:228–231CrossRefGoogle Scholar
  23. 23.
    Tiwari V, Srivastava G (2014) Effect of thermal processing conditions on the structure and dielectric properties of PVDF films. J Polym Res 21(11):1–8CrossRefGoogle Scholar
  24. 24.
    Tiwari V, Srivastava G (2015) Structural, dielectric and piezoelectric properties of 0–3 PZT/PVDF composites. Ceram Int 41(6):8008–8013CrossRefGoogle Scholar
  25. 25.
    Tiwari V, Srivastava G (2015) The effect of Li 2 CO 3 addition on the structural, dielectric and piezoelectric properties of PZT ceramics. Ceram Int 41(2):2774–2778CrossRefGoogle Scholar
  26. 26.
    Umarji A, Srivastava G (2010) The influence of Zr/Ti content on the morphotropic phase boundary in the PZT–PZN system. Mater Sci Eng B 167(3):171–176CrossRefGoogle Scholar
  27. 27.
    Srivastava G, Goswami A, Umarji A (2013) Temperature dependent structural and dielectric investigations of PbZr 0.5 Ti 0.5 O 3 solid solution at the morphotropic phase boundary. Ceram Int 39(2):1977–1983CrossRefGoogle Scholar
  28. 28.
    Srivastava G, Maglione M, Umarji A (2012) The study of dielectric, pyroelectric and piezoelectric properties on hot pressed PZT-PMN systems. AIP Adv 2(4):042170CrossRefGoogle Scholar
  29. 29.
    Bhat V, Angadi B, Umarji A (2005) Synthesis, low temperature sintering and property enhancement of PMN–PT ceramics based on the dilatometric studies. Mater Sci Eng B 116(2):131–139CrossRefGoogle Scholar
  30. 30.
    Choi YJ, Yoo M-J, Kang H-W, Lee H-G, Han SH, Nahm S (2013) Dielectric and piezoelectric properties of ceramic-polymer composites with 0–3 connectivity type. J Electroceram 30(1–2):30–35CrossRefGoogle Scholar
  31. 31.
    Wegener M, Arlt K (2008) PZT/P (VDF-HFP) 0–3 composites as solvent-cast thin films: preparation, structure and piezoelectric properties. J Phys D Appl Phys 41(16):165409CrossRefGoogle Scholar
  32. 32.
    Arlt K, Wegener M (2010) Piezoelectric PZT/PVDF-copolymer 0–3 composites: aspects on film preparation and electrical poling. IEEE Trans Dielectr Electr Insul 17(4):1178–1184CrossRefGoogle Scholar
  33. 33.
    Son Y, Kweon S, Kim S, Kim Y, Hong T, Lee Y (2007) Fabrication and electrical properties of PZT-PVDF 0–3 type composite film. Integr Ferroelectr 88(1):44–50CrossRefGoogle Scholar
  34. 34.
    Tang H, Lin Y, Andrews C, Sodano HA (2011) Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology 22(1):015702CrossRefGoogle Scholar
  35. 35.
    Aftab S, Hall D, Aleem M, Siddiq M (2013) Low field ac study of PZT/PVDF nano composites. J Mater Sci Mater Electron 24(3):979–986CrossRefGoogle Scholar
  36. 36.
    Zak A, Gan W, Majid WA, Darroudi M, Velayutham T (2011) Experimental and theoretical dielectric studies of PVDF/PZT nanocomposite thin films. Ceram Int 37(5):1653–1660CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Physics and Materials Science and EngineeringJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations