Skip to main content
Log in

Enhanced dielectric and piezoelectric properties of 0–3 PZT/PVDF composites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Flexible piezoelectric composite films of ([PZT/]x/[PVDF]1-x (x = 0, 0.1, 0.2, 0.3) with 0–3 connectivity were synthesized from 0.2 wt% Li2CO3 added PZT ceramic powders in the morphotropic phase boundary (MPB) and PVDF polymer by solution cast technique under optimized thermal processing conditions. It is seen that crystallinity and β phase are enhanced with the addition of Li in the composite films and as well as with the volume content of PZT ceramics in PVDF matrix, thereby resulting in superior dielectric and piezoelectric properties. It is also seen that reasonably high dielectric and piezoelectric properties are obtained for 30 % of the volume content of PZT ceramics as compared to 50 % of the volume content of ceramic in the polymer matrix as reported in literature and hence, the flexibility is better in these films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zinck C, Pinceau D, Defay E, Delevoye E, Barbier D (2004) Development and characterization of membranes actuated by a PZT thin film for MEMS applications. Sensors Actuators A Phys 115(2):483–489

    Article  CAS  Google Scholar 

  2. Piekarski B, Dubey M, Zakar E, Polcawich R, Devoe D, Wickenden D (2002) Sol–gel PZT for MEMS applications. Integr Ferroelectr 42(1):25–37

    Article  CAS  Google Scholar 

  3. Harris N, Hill M, Torah R, Townsend R, Beeby S, White N, Ding J (2006) A multilayer thick-film PZT actuator for MEMs applications. Sensors Actuators A Phys 132(1):311–316

    Article  CAS  Google Scholar 

  4. Muralt P (2008) Recent progress in materials issues for piezoelectric MEMS. J Am Ceram Soc 91(5):1385–1396

    Article  CAS  Google Scholar 

  5. Cross LE (1996) Ferroelectric materials for electromechanical transducer applications. Mater Chem Phys 43(2):108–115

    Article  CAS  Google Scholar 

  6. Furukawa T (1997) Structure and functional properties of ferroelectric polymers. Adv Colloid Interf Sci 71:183–208

    Article  Google Scholar 

  7. Lü Z, Pu T, Huang Y, Meng X, Xu H (2015) Flexible ferroelectric polymer devices based on inkjet-printed electrodes from nanosilver ink. Nanotechnology 26(5):055202

    Article  Google Scholar 

  8. Mao D, Mejia I, Stiegler H, Gnade B, Quevedo-Lopez M (2011) Fatigue characteristics of poly (vinylidene fluoride-trifluoroethylene) copolymer ferroelectric thin film capacitors for flexible electronics memory applications. Org Electron 12(8):1298–1303

    Article  CAS  Google Scholar 

  9. Sharma M, Ranganatha S, Kalyani AK, Ranjan R, Madras G, Bose S (2014) Zirconia doped barium titanate induced electroactive β polymorph in PVDF-HFP: high energy density and dielectric properties. Mater Res Express 1(4):045301

    Article  Google Scholar 

  10. Sharma M, Singh MP, Srivastava C, Madras G, Bose S (2014) Poly (vinylidene fluoride)-based flexible and lightweight materials for attenuating microwave radiations. ACS Appl Mater Interfaces 6(23):21151–21160

    Article  CAS  Google Scholar 

  11. Sharma M, Madras G, Bose S (2014) Process induced electroactive β-polymorph in PVDF: effect on dielectric and ferroelectric properties. Phys Chem Chem Phys 16(28):14792–14799

    Article  CAS  Google Scholar 

  12. Skinner D, Newnham R, Cross L (1978) Flexible composite transducers. Mater Res Bull 13(6):599–607

    Article  CAS  Google Scholar 

  13. Newnham RE, Bowen L, Klicker K, Cross L (1980) Composite piezoelectric transducers. Mater Des 2(2):93–106

    Article  CAS  Google Scholar 

  14. Smith WA, Shaulov A, Auld B (1985) Tailoring the properties of composite piezoelectric materials for medical ultrasonic transducers. In: IEEE ultrasonics symposium. pp 642–647

  15. Newnham R, Skinner D, Cross L (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13(5):525–536

    Article  CAS  Google Scholar 

  16. Venkatragavaraj E, Satish B, Vinod P, Vijaya M (2001) Piezoelectric properties of ferroelectric PZT-polymer composites. J Phys D Appl Phys 34(4):487

    Article  CAS  Google Scholar 

  17. Satish B, Sridevi K, Vijaya M (2002) Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique. J Phys D Appl Phys 35(16):2048

    Article  CAS  Google Scholar 

  18. Lallart M (2011) Ferroelectrics-material aspects. InTech

  19. De-Qing Z, Da-Wei W, Jie Y, Quan-Liang Z, Zhi-Ying W, Mao-Sheng C (2008) Structural and electrical properties of PZT/PVDF piezoelectric nanocomposites prepared by cold-press and hot-press routes. Chin Phys Lett 25(12):4410

    Article  Google Scholar 

  20. Chen X-D, Yang D-B, Jiang Y-D, Wu Z-M, Li D, Gou F-J, Yang J-D (1998) 0–3 piezoelectric composite film with high d 33 coefficient. Sensors Actuators A Phys 65(2):194–196

    Article  CAS  Google Scholar 

  21. Han P, Pang S, Fan J, Shen X, Pan T (2013) Highly enhanced piezoelectric properties of PLZT/PVDF composite by tailoring the ceramic Curie temperature, particle size and volume fraction. Sensors Actuators A Phys 204:74–78

    Article  CAS  Google Scholar 

  22. Guan X, Zhang Y, Li H, Ou J (2013) PZT/PVDF composites doped with carbon nanotubes. Sensors Actuators A Phys 194:228–231

    Article  CAS  Google Scholar 

  23. Tiwari V, Srivastava G (2014) Effect of thermal processing conditions on the structure and dielectric properties of PVDF films. J Polym Res 21(11):1–8

    Article  CAS  Google Scholar 

  24. Tiwari V, Srivastava G (2015) Structural, dielectric and piezoelectric properties of 0–3 PZT/PVDF composites. Ceram Int 41(6):8008–8013

    Article  CAS  Google Scholar 

  25. Tiwari V, Srivastava G (2015) The effect of Li 2 CO 3 addition on the structural, dielectric and piezoelectric properties of PZT ceramics. Ceram Int 41(2):2774–2778

    Article  CAS  Google Scholar 

  26. Umarji A, Srivastava G (2010) The influence of Zr/Ti content on the morphotropic phase boundary in the PZT–PZN system. Mater Sci Eng B 167(3):171–176

    Article  Google Scholar 

  27. Srivastava G, Goswami A, Umarji A (2013) Temperature dependent structural and dielectric investigations of PbZr 0.5 Ti 0.5 O 3 solid solution at the morphotropic phase boundary. Ceram Int 39(2):1977–1983

    Article  CAS  Google Scholar 

  28. Srivastava G, Maglione M, Umarji A (2012) The study of dielectric, pyroelectric and piezoelectric properties on hot pressed PZT-PMN systems. AIP Adv 2(4):042170

    Article  Google Scholar 

  29. Bhat V, Angadi B, Umarji A (2005) Synthesis, low temperature sintering and property enhancement of PMN–PT ceramics based on the dilatometric studies. Mater Sci Eng B 116(2):131–139

    Article  Google Scholar 

  30. Choi YJ, Yoo M-J, Kang H-W, Lee H-G, Han SH, Nahm S (2013) Dielectric and piezoelectric properties of ceramic-polymer composites with 0–3 connectivity type. J Electroceram 30(1–2):30–35

    Article  CAS  Google Scholar 

  31. Wegener M, Arlt K (2008) PZT/P (VDF-HFP) 0–3 composites as solvent-cast thin films: preparation, structure and piezoelectric properties. J Phys D Appl Phys 41(16):165409

    Article  Google Scholar 

  32. Arlt K, Wegener M (2010) Piezoelectric PZT/PVDF-copolymer 0–3 composites: aspects on film preparation and electrical poling. IEEE Trans Dielectr Electr Insul 17(4):1178–1184

    Article  CAS  Google Scholar 

  33. Son Y, Kweon S, Kim S, Kim Y, Hong T, Lee Y (2007) Fabrication and electrical properties of PZT-PVDF 0–3 type composite film. Integr Ferroelectr 88(1):44–50

    Article  CAS  Google Scholar 

  34. Tang H, Lin Y, Andrews C, Sodano HA (2011) Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology 22(1):015702

    Article  Google Scholar 

  35. Aftab S, Hall D, Aleem M, Siddiq M (2013) Low field ac study of PZT/PVDF nano composites. J Mater Sci Mater Electron 24(3):979–986

    Article  CAS  Google Scholar 

  36. Zak A, Gan W, Majid WA, Darroudi M, Velayutham T (2011) Experimental and theoretical dielectric studies of PVDF/PZT nanocomposite thin films. Ceram Int 37(5):1653–1660

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetika Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, V., Srivastava, G. Enhanced dielectric and piezoelectric properties of 0–3 PZT/PVDF composites. J Polym Res 23, 38 (2016). https://doi.org/10.1007/s10965-016-0928-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0928-2

Keywords

Navigation