Journal of Polymer Research

, 23:36 | Cite as

Facile noncovalent assembly of MWCNT-LDH and CNF-LDH as reinforcing hybrid fillers in thermoplastic polyurethane/nitrile butadiene rubber blends

  • Saheli Roy
  • Suneel Kumar Srivastava
  • Vikas Mittal
Original Paper


Zinc-Aluminium layered double hydroxides (LDH) were assembled on pristine multiwalled carbon nanotubes (MWCNT) and carbon nanofiber (CNF) through noncovalent assembly and characterized. Further these hybrids were used as reinforcing filler in TPU/NBR (1:1 w/w) blend. Our investigations showed TPU/NBR blend containing 0.50 wt% MWCNT-LDH hybrid exhibit superior mechanical properties (Tensile strength: 126 % and storage modulus: 321 % at −60 °C) compared to neat TPU/NBR. In contrast, 0.50 wt% CNF-LDH hybrid filled TPU/NBR blend nanocomposites showed enhanced thermal stability (25 °C) and crystallization temperature (36 °C) with respect to neat blend. Such improvements in mechanical and thermal properties could be attributed to better homogeneous dispersion, stronger interfacial interaction and synergistic effect.

Graphical Abstract

CNT-LDH and CNF-LDH hybrids have successfully been fabricated via noncovalent assembly and used as nanofiller in TPU/NBR blend. These blend nanocomposites exhibit excellent improvements in their mechanical and thermal properties.


Hybrid filler Noncovalent assembly TPU/NBR blends Mechanical properties Thermal properties 



The authors are grateful to CSIR, New Delhi, India, for financial support. We express our gratitude to Bayer Germany and Lanxess (Germany) for providing us TPU (Desmopan-9385) and NBR (Krynac 2865F) respectively. Author expresses thanks to Rubber Technology Centre, Indian Institute of Technology, Kharagpur for providing compression moulding and DMA.

Supplementary material

10965_2016_926_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1700 kb)


  1. 1.
    Mehrabzadeh M, Kamal MR (2004) Polym Eng Sci 44:1152CrossRefGoogle Scholar
  2. 2.
    Khatua BB, Lee DJ, Kim HY, Kim JK (2004) Macromolecules 37:2454CrossRefGoogle Scholar
  3. 3.
    Gelfer MY, Song HH, Liu L, Hsiao BS, Chu B, Rafailovich MY, Si M, Zaitsev V (2003) J Polym Sci Part B:Polym Phys 41:44CrossRefGoogle Scholar
  4. 4.
    Li X, Mishra JK, Seul SD, Kim IL, Ha CS (2004) Compos Interfaces 11:335CrossRefGoogle Scholar
  5. 5.
    Wang Y, Zhang Q, Fu Q (2003) Macromol Rapid Commun 24:231CrossRefGoogle Scholar
  6. 6.
    Mistretta MC, Morreale M, La Mantia FP (2014) Polym Degrad Stab 99:61CrossRefGoogle Scholar
  7. 7.
    Li Y, Shimizu H (2004) Polymer 45:7381CrossRefGoogle Scholar
  8. 8.
    Kuila T, Srivastava SK, Bhowmick AK, Saxena AK (2008) Compos Sci Technol 68:3234CrossRefGoogle Scholar
  9. 9.
    Agarwal S, Saraswat VK (2015) Opt Mater 42:335CrossRefGoogle Scholar
  10. 10.
    Desai S, Thakore IM, Brennan A, Devi S (2001) J Macromol Sci, Part A 38:711CrossRefGoogle Scholar
  11. 11.
    Kotal M, Srivastava SK, Bhowmick AK (2010) Polym Int 59:2CrossRefGoogle Scholar
  12. 12.
    Roy S, Srivastava SK, Pionteck J, Mittal V (2016) Polym Int 65:93Google Scholar
  13. 13.
    Tan JH, Wang XP, Tai JJ, Luo YF, Jia DM (2012) Express Polym Lett 6:588CrossRefGoogle Scholar
  14. 14.
    Wei C, Dai L, Roy A, Tolle TB (2006) J Am Chem Soc 128:1412CrossRefGoogle Scholar
  15. 15.
    Bindumadhavan K, Srivastava SK, Mahanty S (2013) Chem Commun 49:1823CrossRefGoogle Scholar
  16. 16.
    Li N, Huang Y, Du F, He X, Lin X, Gao H, Ma Y, Li F, Chen Y, Eklund PC (2006) Nano Lett 6:1141CrossRefGoogle Scholar
  17. 17.
    Chua TP, Mariatti M, Azizan A, Rashid AA (2010) Compos Sci Technol 70:671CrossRefGoogle Scholar
  18. 18.
    Jiang MJ, Dang ZM, Yao SH, Bai J (2008) Chem Phys Lett 457:352CrossRefGoogle Scholar
  19. 19.
    Fu J, Qiao H, Li D, Luo L, Chen K, Wei Q (2014) Sensors 14:3543CrossRefGoogle Scholar
  20. 20.
    Shi Y, Feng X, Wang H, Lu X (2008) Wear 264:934CrossRefGoogle Scholar
  21. 21.
    Si Q, Hanai K, Ichikawa T, Hirano A, Imanishi N, Yamamoto O, Takeda Y (2011) J Power Sources 196:6982CrossRefGoogle Scholar
  22. 22.
    Vellacheri R, Pillai VK, Kurungot S (2012) Nanoscale 4:890CrossRefGoogle Scholar
  23. 23.
    Wang J, Fan G, Wang H, Li F (2011) Ind Eng Chem Res 50:13717CrossRefGoogle Scholar
  24. 24.
    Sels B, De Vos D, Buntinx M, Pierard F, Kirsch-De Mesmaeker A, Jacobs P (1999) Nature 400:855CrossRefGoogle Scholar
  25. 25.
    Zhao Y, He S, Wei M, Evans DG, Duan X (2010) Chem Commun 46:3031CrossRefGoogle Scholar
  26. 26.
    Roy S, Srivastava SK, Pionteck J, Mittal V (2014) Polym Compos. doi: 10.1002/pc.23350 Google Scholar
  27. 27.
    Roy S, Srivastava SK, Pionteck J, Mittal V (2015) Macromol Mater Eng 300:346CrossRefGoogle Scholar
  28. 28.
    Pradhan B, Srivastava SK (2014) Compos Part A 56:290CrossRefGoogle Scholar
  29. 29.
    Cao Y, Zhao Y, Li Q, Jiao Q (2009) J Chem Sci 121:225CrossRefGoogle Scholar
  30. 30.
    Zhao MQ, Zhang Q, Jia XL, Huang JQ, Zhang YH, Wei F (2010) Adv Funct Mater 20:677CrossRefGoogle Scholar
  31. 31.
    Xiang X, Bai L, Li F (2010) Aiche j 56:2934CrossRefGoogle Scholar
  32. 32.
    Du B, Fang Z (2010) Nanotechnology 21:315603/1CrossRefGoogle Scholar
  33. 33.
    Wang H, Xiang X, Li F (2010) J Mater Chem 20:3944CrossRefGoogle Scholar
  34. 34.
    Wang H, Xiang X, Li F (2010) Aiche j 56:768CrossRefGoogle Scholar
  35. 35.
    Huang S, Peng H, Tjiu WW, Yang Z, Zhu H, Tang T, Liu T (2010) J Phys Chem B 114:16766CrossRefGoogle Scholar
  36. 36.
    He F, Hu Z, Liu K, Zhang S, Liu H, Sang S (2014) J Power Sources 267:188CrossRefGoogle Scholar
  37. 37.
    Meis NNAH, Bitter JH, De Jong KP (2010) Ind Eng Chem Res 49:8086CrossRefGoogle Scholar
  38. 38.
    Álvarez MG, Frey AM, Bitter JH, Segarra AM, de Jong KP, Medina F (2013) Appl Catal B Environ 134-135:231CrossRefGoogle Scholar
  39. 39.
    Winter F, van Dillen AJ, de Jong KP (2005) Chem Commun:3977Google Scholar
  40. 40.
    Cruz EF, Zheng Y, Torres E, Li W, Song W, Burugapalli K (2012) Int J Electrochem Sci 7:3577Google Scholar
  41. 41.
    Li D, Tuo Z, Evans DG, Duan X (2006) J Solid State Chem 179:3114CrossRefGoogle Scholar
  42. 42.
    Liu J, Chen G, Yang J, Ding L (2009) Mater Chem Phys 118:405CrossRefGoogle Scholar
  43. 43.
    Ahmed AAA, Talib ZA, Hussein MZB (2012) Appl Clay Sci 56:68CrossRefGoogle Scholar
  44. 44.
    Yesil S, Winkelmann C, Bayrama G, Saponara VL (2010) Mater Sci Eng A 527:7340CrossRefGoogle Scholar
  45. 45.
    Singh MK, Agarwal A, Gopal R, Swarnkar RK, Kotnala RK (2011) J Mater Chem 21:11074CrossRefGoogle Scholar
  46. 46.
    Zhanga YX, Haoa XD, Kuanga M, Zhaoc H, Wen ZQ (2013) Appl Surf Sci 283:505CrossRefGoogle Scholar
  47. 47.
    Andersen SM, Borghei M, Lund P, Elina Y-R, Pasanen A, Kauppinen E, Ruiz V, Kauranen P, Skou EM (2013) Solid State Ionics 231:94CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Saheli Roy
    • 1
  • Suneel Kumar Srivastava
    • 1
  • Vikas Mittal
    • 2
  1. 1.Department of ChemistryIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of Chemical EngineeringThe Petroleum InstituteAbu DhabiUnited Arab Emirates

Personalised recommendations