Journal of Polymer Research

, 22:205 | Cite as

Preparation and characterization of nano-hybrids combining poly(urea-imide) with a porous silica-pillared layered phase

Original Paper


The mechanical, thermal and dielectric properties of nano-hybrids comprised of poly(urea-imide) (PUI) and a highly porous nano-silica-pillared layered clay were studied. The PUI was prepared from an aromatic diamine (4,4′-diphenylmethane diisocyanate; MDI), an aromatic dianhydride (pyromellitic diahydride; PMDA) and 4,4′-oxydianiline (ODA). Different ratios of the nano-silica-pillared layered clays (NSP7030) were modified using tetraethoxysilane (TEOS) via a sol–gel process. The TEOS modified NSP7030 clays (NSP7030/TEOS) were further calcined at 500 °C (C-NSP7030/TEOS). The nano-hybrids comprised of PUI and C-NSP7030/TEOS clays were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and their mechanical and dielectrical properties et al. The results showed that the exfoliated (major) and intercalated (minor) structures of the nano-silica-pillared layered clays (NSP7030) were successfully modified by TEOS via a sol–gel process. Furthermore, the nano-hybrids exhibited slightly higher thermal stability than the pure PUI component. The highest thermal decomposition temperature at 5 % weight loss (Td 5 %) of the material degraded was at 510 °C because the nano-hybrids contained poly(urea-imide) with 15 wt.% C-NSP7030/TEOS(1/5). Pure PUI exhibited good values of tensile strength and elongation which were 96.1 MPa and 9.0 %. After the addition of C-NSP7030/TEOS(1/5), the values of tensile strength and elongation decreased slightly. Surprisingly, the dielectric constant of nano-hybrids containing 15 wt.% C-NSP7030/TEOS(1/5) could be enhanced from 3.88 to 3.31. In addition, agglomerations of the C-NSP7030/TEOS(1/5) clay are observed in the micrographs when the PUI matrix was loaded with 10 and 15 wt% of the C-NSP7030/TEOS(1/5) clays.


Poly(urea-imide) Silica-pillared Nano-hybrids Mechanical properties Thermal properties 



The authors gratefully acknowledge the support for this research by the Ministry of Economic Affairs in Taiwan under the grant numbers 101-EC-17-A-08-S1-205 and Kaohsiung Medical University in Taiwan under the grant numbers KMU-TP103B03, respectively


  1. 1.
    Zou H, Wu SS, Shen J (2008) Chem Rev 108:3893–3957CrossRefGoogle Scholar
  2. 2.
    Gilman JW, Jackson CL, Morgan AB, Jr RH (2000) Chem Mater 12:1866–1873Google Scholar
  3. 3.
    Wei LM, Tang T, Huang BT (2004) J Polym Sci Pol Chem 42:941–949CrossRefGoogle Scholar
  4. 4.
    Bilotti E, Fischer HR, Peijs T (2008) J Appl Polym Sci 107:1116–1123CrossRefGoogle Scholar
  5. 5.
    Natta G, Corradini P (1960) Nuovo Cim (Suppl) 15:40–51CrossRefGoogle Scholar
  6. 6.
    Chang WY, Chen SH, Yang CH, Chuang CN, Wang CK, Hsieh KH (2015) J Polym Res 22:38–46CrossRefGoogle Scholar
  7. 7.
    Wang L, Chang P, Cheng CL (2006) J Appl Polym Sci 100:4672–4678CrossRefGoogle Scholar
  8. 8.
    Ghosh MK, Mittal KL (1996) Polyimides: fundamentals and applications. Marcel Dekker, New YorkGoogle Scholar
  9. 9.
    Li Y, Wang Z, Li GJ, Ding MX, Yan JL (2012) J Polym Res 19:9772–9778CrossRefGoogle Scholar
  10. 10.
    Toiserkani H (2011) Open J Polym Chem 1:1–9CrossRefGoogle Scholar
  11. 11.
    Yang CP, Chen WT (1993) Macromolecules 26:4865–4871CrossRefGoogle Scholar
  12. 12.
    Reichle WT, Kang SY, Everhart DS (1986) J Catal 101:352–359CrossRefGoogle Scholar
  13. 13.
    Depege C, El Metoui FE, Forano C, de Roy A, Dupuis J, Besse JP (1996) Chem Mater 8:952–960CrossRefGoogle Scholar
  14. 14.
    Qian Z, Hu G, Zhang S, Yang M (2008) Phys B Condens Matter 403:3231–3238CrossRefGoogle Scholar
  15. 15.
    Mao H, Li B, Yue L, Wang L, Yang J, Gao X (2011) Appl Clay Sci 53:676–683CrossRefGoogle Scholar
  16. 16.
    Matijević E (1994) Langmuir 10:8–16CrossRefGoogle Scholar
  17. 17.
    Letaïef S, Martín-Luengo MA, Aranda P, Ruiz-Hitzky E (2006) Adv Funct Mater 16:401–409CrossRefGoogle Scholar
  18. 18.
    Letaief S, Ruiz-Hitzky E (2003) Chem Commun 24:2996–2997CrossRefGoogle Scholar
  19. 19.
    Moini A, Pinnavaia TJ (1986) Solid State Ionics 26:119–123CrossRefGoogle Scholar
  20. 20.
    Kwon OY, Park KW, Jeong SY (2001) Bull Korean Chem Soc 22:678–684Google Scholar
  21. 21.
    Nakao T, Nogami M (2005) Mater Lett 59:3221–3225CrossRefGoogle Scholar
  22. 22.
    Zhou, Li X, Ge Z, Li Q, Tong D (2004) Catal Today 93–95:607–613Google Scholar
  23. 23.
    Chu CC, Chiang ML, Tsai CM, Lin JJ (2005) Macromolecules 38:6240–6243CrossRefGoogle Scholar
  24. 24.
    Chiu CW, Chu CC, Dai SA, Lin JJ (2008) J Phys Chem C 112:17940–17944CrossRefGoogle Scholar
  25. 25.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  26. 26.
    Toiserkani H, Sheibani H, Saidi K (2011) Polym Adv Technol 22:1494–1501CrossRefGoogle Scholar
  27. 27.
    Toiserkani H (2011) High Perform Polym 23:542–554CrossRefGoogle Scholar
  28. 28.
    Hung TV, Frank GS (2002) Microelec J 33:409–415CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of Polymer Science and Engineering, College of EngineeringNational Taiwan UniversityTaipei CityTaiwan
  2. 2.Department of Medicinal and Applied ChemistryKaohsiung Medical UniversityKaohsiungTaiwan
  3. 3.Orthopaedic Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
  4. 4.Department of Chemical Engineering, College of EngineeringNational Taiwan UniversityTaipei CityTaiwan

Personalised recommendations