Journal of Polymer Research

, 22:219 | Cite as

Iron oxide-based polymeric magnetic microspheres with a core shell structure: from controlled synthesis to demulsification applications

  • Nisar Ali
  • Zhang Baoliang
  • Hepeng Zhang
  • Wajed Zaman
  • Sarmad Ali
  • Zafar Ali
  • Wei Li
  • Qiuyu Zhang
Original Paper


In this paper, iron oxide poly(methylmethacrylate-acrylicacid-divinylbenzene) Fe3O4@P(MMA-AA-DVB) magnetic core shell microspheres with chemical bonds between the inorganic core and the polymer shell in a narrow particle size were designed and synthesized. The surface morphology and magnetic properties of the magnetic Fe3O4@P(MMA-AA-DVB) nanoparticles formed were characterized using a laser particle size analyzer, transmission electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry, and thermogravimetric analysis. Fourier transform infrared spectrometer analysis indicates the presence of carboxylic group -COOH and Fe3O4 in the final Fe3O4@P(MMA-AA-DVB) core shell microspheres. The Fe3O4@P(MMA-AA-DVB) core shell microspheres possessed a characteristic of paramagnetic with the saturation magnetization value of about 7 to 9 emu/g determined by vibrating sample magnetometer (VSM). The experimental results show that Fe3O4@P(MMA-AA-DVB) magnetic core shell microspheres exhibit model interfacially active and demulsification properties. The results showed that the microspheres exhibited excellent magnetic and demulsification properties and can be recycled to use again.


Core shell magnetic materials Interfacial properties Emulsion Demulsification Composite microspheres 



The authors are grateful for the financial support provided by the National Natural Science Foundation of China (No. 51173146), basic research fund of Northwestern Polytechnical University (3102014JCQ01094, 3102014ZD).


  1. 1.
    Khanna L, Verma NK (2013) Silica/potassium ferrite nanocomposite: structural, morphological, magnetic, thermal and in vitro cytotoxicity analysis. Mater Sci Eng B 178:1230–1239CrossRefGoogle Scholar
  2. 2.
    Guo F et al (2011) Controlled preparation of Fe3O4/P (St-MA) magnetic composite microspheres by DPE method. J Polym Res 18:745–751CrossRefGoogle Scholar
  3. 3.
    Lu M et al (2007) Synthesis and characterization of magnetic polymer microspheres with a core–shell structure. China Particuology 5:180–185CrossRefGoogle Scholar
  4. 4.
    Oh JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36:168–189CrossRefGoogle Scholar
  5. 5.
    Wei S, Zhang Y, Xu J (2011) Preparation and properties of poly(acrylic acid-co-styrene)/Fe3O4 Nanocomposites. J Polym Res 18:125–130CrossRefGoogle Scholar
  6. 6.
    Horak D, Babic M, Mackova H, Benes MJ (2007) Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J Sep Sci 30:1751–1772CrossRefGoogle Scholar
  7. 7.
    Shen P, Jiang W, Wang F, Chen M, Ma P, Li F (2013) Preparation and characterization of Fe3O4@TiO2 shell on polystyrene beads. J Polym Res 20:252CrossRefGoogle Scholar
  8. 8.
    Zhou LL, Yuan JY, Wei Y (2011) Core-shell structural iron oxide hybrid nanoparticles: from controlled synthesis to biomedical applications. J Mater Chem 9:2823–2840CrossRefGoogle Scholar
  9. 9.
    Liu ZL et al (2003) Preparation and characterization of polymer-coated core-shell structured magnetic microbeads. J Magn Magn Mater 265:98–105CrossRefGoogle Scholar
  10. 10.
    Li Z et al (2013) Synthesis and characterization of monodisperse magnetic Fe3O4@BSA core-shell nanoparticles. Colloids Surf A Physicochem Eng Asp 436:1145–1151CrossRefGoogle Scholar
  11. 11.
    Li Y et al (2013) Synthesis of Fe3O4@poly(methacrylic acid) core-shell submicrospheres via RAFT precipitation polymerization. J Colloid Interface Sci 394:199–207CrossRefGoogle Scholar
  12. 12.
    Law WC, Yong KT, Roy I, Xu G, Ding H, Bergey EJ (2008) Optically and magnetically doped organically modified silica nanoparticles as efficient magnetically guided biomarkers for two-photon imaging of live cancer cells. J Phys Chem C 112:7972–7977CrossRefGoogle Scholar
  13. 13.
    Khan A et al (2012) Preparation of magnetic polyacrylonitrile core–shell nanospheres by the miniemulsion polymerization method. Mater Lett 76:141–143Google Scholar
  14. 14.
    Petchthanasombat C et al (2012) Synthesis of zinc oxide-encapsulated poly(methyl methacrylate)-chitosan core-shell hybrid particles and their electrochemical property. J Colloid Interface Sci 369(2012):52–57CrossRefGoogle Scholar
  15. 15.
    Li GL et al (2009) Hairy hybrid nanoparticles of magnetic core, fluorescent silica shell, and functional polymer brushes. Macromolecules 42:8561CrossRefGoogle Scholar
  16. 16.
    Lattuada M, Hatton TA (2007) Functionalization of monodisperse magnetic nanoparticles. Langmuir 23:2158–2168CrossRefGoogle Scholar
  17. 17.
    Antochshuk V, Jaroniec M (2000) Functionalized mesoporous materials obtained via interfacial reactions in self assembled silica surfactant systems. Chem Mater 12:2496–2501CrossRefGoogle Scholar
  18. 18.
    Wu PG, Zhu JH, Xu ZH (2004) Template-assisted synthesis of mesoporous magnetic nanocomposite particles. Adv Funct Mater 14:345–351CrossRefGoogle Scholar
  19. 19.
    Wang DY, Duan HW, Möhwald H (2005) The water/oil interface: the emerging horizon for self assembly of nanoparticles. Soft Matter 1:412–416CrossRefGoogle Scholar
  20. 20.
    Zhang L, Liu P, Wang TM (2011) Preparation of superparamagnetic polyaniline hybrid hollow microspheres in oil/water emulsion with magnetic nanoparticles as cosurfactant. Chem Eng J 171:711–716CrossRefGoogle Scholar
  21. 21.
    Brugger B, Richtering W (2007) Magnetic, thermosensitive microgels as stimuli responsive emulsifiers allowing for remote control of separability and stability of oil in water emulsions. Adv Mater 19(19):2973–2978Google Scholar
  22. 22.
    Liu J, Sun ZK, Deng YH, Zou Y, Li CY, Guo XH, Xiong LQ, Gao Y, Li FY, Zhao DY (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed 48:5875–5879CrossRefGoogle Scholar
  23. 23.
    Liu GY, Yang XL, Wang YM (2007) Preparation of monodisperse hydrophilic polymer microspheres with N, N′-methylenediacrylamide as crosslinker by distillation precipitation polymerization. Polym Int 56:905–913CrossRefGoogle Scholar
  24. 24.
    Deng H, Li X, Peng Q, Wang X, Chen J, Li YD (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem 117:2842–2845CrossRefGoogle Scholar
  25. 25.
    Lu Y, Yin Y, Mayers BT, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol–gel approach. Nano Lett 2:183–186CrossRefGoogle Scholar
  26. 26.
    LWang Y, Xia YN (2004) Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett 4:2047–2050CrossRefGoogle Scholar
  27. 27.
    Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44:2782–2785CrossRefGoogle Scholar
  28. 28.
    Saegusa T (1995) Organic/inorganic polymer hybrids. Macromol Sympo-sia 1:719–729CrossRefGoogle Scholar
  29. 29.
    Liu B et al (2012) Facile method for large scale synthesis of magnetic inorganic–organic hybrid anisotropic Janus particles. J Colloid Interface Sci 385:34–40CrossRefGoogle Scholar
  30. 30.
    Ma WF, Xu S, Li JM, Guo J, Lin Y, Wang CC (2011) Hydrophilic dual-responsive magnetite/PMAA core/shell microspheres with high magnetic susceptibility and ph sensitivity via distillation-precipitation polymerization. J Polym Sci A Polym Chem 49:2725–2733CrossRefGoogle Scholar
  31. 31.
    Yang J, Peng XG, Li TJ, Pan SF (1994) Size-dependent FTIR spectroscopy of nanoparticulate α-Fe2O3-stearate alternating Langmuir-Blodgett films. Thin Solid Films 243(12):643–646CrossRefGoogle Scholar
  32. 32.
    Yuet KP, Hwang DK, Haghgooie R, Doyle PS (2010) Multifunctional superparamagnetic janus particles. Langmuir 26(6):4281–4287CrossRefGoogle Scholar
  33. 33.
    Azodi M, Solaimany Nazar AR (2013) An experimental study on factors affecting the heavy crude oil in water emulsions viscosity. J Pet Sci Eng 106:1–8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Nisar Ali
    • 1
  • Zhang Baoliang
    • 1
  • Hepeng Zhang
    • 1
  • Wajed Zaman
    • 2
  • Sarmad Ali
    • 1
  • Zafar Ali
    • 1
  • Wei Li
    • 1
  • Qiuyu Zhang
    • 1
    • 3
  1. 1.Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education, School of ScienceNorthwestern Polytechnical UniversityXi’anChina
  2. 2.School of material scienceNorthwestern Polytechnical UniversityXi’anChina
  3. 3.School of ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations