Advertisement

Journal of Polymer Research

, 22:170 | Cite as

Tunable thermo-responsive supramolecular hydrogel: design, characterization, and drug release

  • Mi Zhou
  • Xiaofeng Ye
  • Kaiyue Liu
  • Jingying Hu
  • Xin Qian
Original Paper

Abstract

During the past decade, a series of thermo-responsive hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) were prepared for drug delivery. However, the release performance of those hydrogels was limited because the LCST (lower critical solution temperature) of PNIPAM (about 32 °C) is slightly lower than human body temperature, and the drug loading is complicated. To develop a new drug delivery matrix with the suitable responsive interval, a novel, temperature-sensitive copolymer with two monomers, N-isopropylacrylamide and methylacrylic polyethylene glycol monomethyl ether ester (MPEGMA) [poly(NIPAM-co-MPEGMA)], was synthesized by free radical polymerization. Then, the supramolecular hydrogels with tunable response temperature, whose structures were confirmed by X-ray diffraction (XRD), were fabricated via inclusion complexation with α-cyclodextrin (α-CD) and the copolymers in aqueous solution. The rheology results indicated that response interval could be modulated by controlling the contents of PNIPAM in the copolymers. Compared to the normal PNIPAM ge1, the succinct method of gel preparation streamlined the process of loading and made the drug loading capacity controllable. The release time was proved to be prolonged by the release kinetics of 5-fluoroucrail (5-Fu), which showed feasibility as a drug delivery.

Keywords

Thermo-responsive Supramolecular hydrogel Drug delivery Self-assembly 

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 21004053) and the Opening Foundation of Zhejiang Provincial Top Key Discipline (No. 20121109).

Supplementary material

10965_2015_804_MOESM1_ESM.doc (1.8 mb)
ESM 1 (DOC 1851 kb)

References

  1. 1.
    Liu DL, Chang X, Dong CM (2013) Chem Commun 49(12):1229–1231CrossRefGoogle Scholar
  2. 2.
    Lee MS, Mok EY, Kim JC (2013) J Macromol Sci A 50(10):1054–1059CrossRefGoogle Scholar
  3. 3.
    Yuan WZ, Zhao ZD, Yuan JY, Gu SY, Zhang FB, Xie X, Ren MJ (2011) Polym Int 60(2):194–201CrossRefGoogle Scholar
  4. 4.
    Zhang X, Xiao Y, Lang M (2014) J Macromol Sci A 51(1):63–75CrossRefGoogle Scholar
  5. 5.
    Yan Q, Feng AC, Zhang HJ, Yin YW, Yuan JY (2013) Polym Chem 4(4):1216–1220CrossRefGoogle Scholar
  6. 6.
    Ma D, Zhang LM, Xie X, Liu T, Xie MQ (2011) J Colloid Interf Sci 359(2):399–406CrossRefGoogle Scholar
  7. 7.
    Hu X, Qiu J, Tan H, Li D, Ma X (2013) J Macromol Sci A 50(9):983–990CrossRefGoogle Scholar
  8. 8.
    Liu G, Liu W, Dong CM (2013) Polym Chem 4(12):3431–3443CrossRefGoogle Scholar
  9. 9.
    Hinton TM, Guerrero-Sanchez C, Graham JE, Le T, Muir BW, Shi S, Tizard ML, Gunatillake PA, McLean KM, Thang SH (2012) Biomaterials 33:7631–7642CrossRefGoogle Scholar
  10. 10.
    Ribot JC, Guerrero-Sanchez C, Greaves TL, Kennedy DF, Hoogenboom R, Schubert US (2012) Soft Matter 8:1025–1032CrossRefGoogle Scholar
  11. 11.
    Wu DC, Loh X, Wu J, Lay YL, Liu CLY (2010) J Am Chem Soc 132(43):15140–15143CrossRefGoogle Scholar
  12. 12.
    Feng C, Shen Z, Li Y, Gu L, Zhang Y, Lu G, Huang X (2009) J Polym Sci Pol Chem 47(7):1811–1824CrossRefGoogle Scholar
  13. 13.
    Lin X, Tang D, Cheng Y (2012) J Macromol Sci A 49(11):980–985CrossRefGoogle Scholar
  14. 14.
    Tucker AK, Stevens MJ (2012) Macromolecules 45(16):6697–6703CrossRefGoogle Scholar
  15. 15.
    Feng Q, Li F, Yan QZ, Zhu YC, Ge CC (2010) Colloid Polym Sci 288(8):915–921CrossRefGoogle Scholar
  16. 16.
    Ren TB, Lei X, Yuan WZ (2012) Mater Lett 67(1):383–386CrossRefGoogle Scholar
  17. 17.
    Zhang XZ, Yang YY, Chung TS (2002) J Colloid Interf Sci 246(1):105–111CrossRefGoogle Scholar
  18. 18.
    Zhao C, Zhuang X, He P, Xiao C, He C, Sun J, Chen X, Jing X (2009) Polymer 50(18):4308–4316CrossRefGoogle Scholar
  19. 19.
    Luo YL, Yu W, Xu F, Zhang LL (2012) J Polym Sci A Polym Chem 50(10):2053–2067CrossRefGoogle Scholar
  20. 20.
    Schmaljohann D (2006) Adv Drug Deliv Rev 58(15):1655–1670CrossRefGoogle Scholar
  21. 21.
    Chen G, Jiang M (2011) Chem Soc Rev 40(5):2254–2266CrossRefGoogle Scholar
  22. 22.
    Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A (2012) Nat Commun 3:603CrossRefGoogle Scholar
  23. 23.
    Li J (2010) NPG Asia Mater 2(3):112–118CrossRefGoogle Scholar
  24. 24.
    Zhao S, Lee J, Xu W (2009) Carbohyd Res 344(16):2201–2208CrossRefGoogle Scholar
  25. 25.
    Ping Y, Wu D, Kumar JN, Cheng W, Lay CL, Liu Y (2013) Biomacromolecules 14(6):2083–2094CrossRefGoogle Scholar
  26. 26.
    Li J, Ni X, Leong KW (2003) J Biomed Mater Res A 65a(2):196–202CrossRefGoogle Scholar
  27. 27.
    Harada A, Kamachi M (1990) Macromolecules 23(10):2821–2823CrossRefGoogle Scholar
  28. 28.
    Harada A, Li J, Kamachi M (1992) Nature 356(6367):325–327CrossRefGoogle Scholar
  29. 29.
    Harada A, Li J, Kamachi M (1993) Macromolecules 26(1):5698–5703CrossRefGoogle Scholar
  30. 30.
    Zhang T, Li G, Guo L, Chen H (2012) Int J Biol Macromol 51(5):1109–1115CrossRefGoogle Scholar
  31. 31.
    Wang SS, Hsieh PL, Chen PS, Chen YT, Jan JS (2013) Colloids Surf B: Biointerfaces 111C:423–431CrossRefGoogle Scholar
  32. 32.
    Gu J, Xia F, Wu Y, Qu X, Yang Z, Jiang L (2007) J Control Release 117(3):396–402CrossRefGoogle Scholar
  33. 33.
    Kalagasidis Krušić M, Ilić M, Filipović J (2009) Polym Bull 63(2):197–211CrossRefGoogle Scholar
  34. 34.
    Yuan W, Ren J (2009) J Polyme Sci A Polym Chem 47:2754–2762CrossRefGoogle Scholar
  35. 35.
    Zou H, Guo W, Yuan WZ (2013) J Mater Chem B 1(45):6235–6244CrossRefGoogle Scholar
  36. 36.
    Rauwald U, Barrio JD, Loh XJ, Scherman OA (2011) Chem Commun 47(21):6000–6002CrossRefGoogle Scholar
  37. 37.
    Okada Y, Tanaka F (2005) Macromolecules 38(10):4465–4471CrossRefGoogle Scholar
  38. 38.
    Tanaka F, Koga T, Winnik FM (2008) Phys Rev Lett 101(2):028302CrossRefGoogle Scholar
  39. 39.
    Inoue H, Kuwahara S, Katayama K (2013) Phys Chem Chem Phys 15(11):3814–3819CrossRefGoogle Scholar
  40. 40.
    Li CL, Ye XD, Ding YW, Liu SL (2012) Chin J Chem Phys 25(4):389–397CrossRefGoogle Scholar
  41. 41.
    Zhang JT, Huang SW, Cheng SX, Zhuo RX (2004) J Polym Sci A Polym Chem 42(5):1249–1254CrossRefGoogle Scholar
  42. 42.
    Taşdelen B, Kayaman-Apohan N, Güven O, Baysal BM (2005) Radiat Phys Chem 73(6):340–345CrossRefGoogle Scholar
  43. 43.
    Zhang JT, Huang SW, Xue YN, Liu J, Zhuo RX (2005) Chin J Polym Sci 23(5):513–519CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringZhejiang University of TechnologyHangzhouChina

Personalised recommendations