Skip to main content
Log in

Tunable thermo-responsive supramolecular hydrogel: design, characterization, and drug release

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

During the past decade, a series of thermo-responsive hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) were prepared for drug delivery. However, the release performance of those hydrogels was limited because the LCST (lower critical solution temperature) of PNIPAM (about 32 °C) is slightly lower than human body temperature, and the drug loading is complicated. To develop a new drug delivery matrix with the suitable responsive interval, a novel, temperature-sensitive copolymer with two monomers, N-isopropylacrylamide and methylacrylic polyethylene glycol monomethyl ether ester (MPEGMA) [poly(NIPAM-co-MPEGMA)], was synthesized by free radical polymerization. Then, the supramolecular hydrogels with tunable response temperature, whose structures were confirmed by X-ray diffraction (XRD), were fabricated via inclusion complexation with α-cyclodextrin (α-CD) and the copolymers in aqueous solution. The rheology results indicated that response interval could be modulated by controlling the contents of PNIPAM in the copolymers. Compared to the normal PNIPAM ge1, the succinct method of gel preparation streamlined the process of loading and made the drug loading capacity controllable. The release time was proved to be prolonged by the release kinetics of 5-fluoroucrail (5-Fu), which showed feasibility as a drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu DL, Chang X, Dong CM (2013) Chem Commun 49(12):1229–1231

    Article  CAS  Google Scholar 

  2. Lee MS, Mok EY, Kim JC (2013) J Macromol Sci A 50(10):1054–1059

    Article  CAS  Google Scholar 

  3. Yuan WZ, Zhao ZD, Yuan JY, Gu SY, Zhang FB, Xie X, Ren MJ (2011) Polym Int 60(2):194–201

    Article  CAS  Google Scholar 

  4. Zhang X, Xiao Y, Lang M (2014) J Macromol Sci A 51(1):63–75

    Article  CAS  Google Scholar 

  5. Yan Q, Feng AC, Zhang HJ, Yin YW, Yuan JY (2013) Polym Chem 4(4):1216–1220

    Article  CAS  Google Scholar 

  6. Ma D, Zhang LM, Xie X, Liu T, Xie MQ (2011) J Colloid Interf Sci 359(2):399–406

    Article  CAS  Google Scholar 

  7. Hu X, Qiu J, Tan H, Li D, Ma X (2013) J Macromol Sci A 50(9):983–990

    Article  CAS  Google Scholar 

  8. Liu G, Liu W, Dong CM (2013) Polym Chem 4(12):3431–3443

    Article  CAS  Google Scholar 

  9. Hinton TM, Guerrero-Sanchez C, Graham JE, Le T, Muir BW, Shi S, Tizard ML, Gunatillake PA, McLean KM, Thang SH (2012) Biomaterials 33:7631–7642

    Article  CAS  Google Scholar 

  10. Ribot JC, Guerrero-Sanchez C, Greaves TL, Kennedy DF, Hoogenboom R, Schubert US (2012) Soft Matter 8:1025–1032

    Article  CAS  Google Scholar 

  11. Wu DC, Loh X, Wu J, Lay YL, Liu CLY (2010) J Am Chem Soc 132(43):15140–15143

    Article  CAS  Google Scholar 

  12. Feng C, Shen Z, Li Y, Gu L, Zhang Y, Lu G, Huang X (2009) J Polym Sci Pol Chem 47(7):1811–1824

    Article  CAS  Google Scholar 

  13. Lin X, Tang D, Cheng Y (2012) J Macromol Sci A 49(11):980–985

    Article  CAS  Google Scholar 

  14. Tucker AK, Stevens MJ (2012) Macromolecules 45(16):6697–6703

    Article  CAS  Google Scholar 

  15. Feng Q, Li F, Yan QZ, Zhu YC, Ge CC (2010) Colloid Polym Sci 288(8):915–921

    Article  CAS  Google Scholar 

  16. Ren TB, Lei X, Yuan WZ (2012) Mater Lett 67(1):383–386

    Article  CAS  Google Scholar 

  17. Zhang XZ, Yang YY, Chung TS (2002) J Colloid Interf Sci 246(1):105–111

    Article  CAS  Google Scholar 

  18. Zhao C, Zhuang X, He P, Xiao C, He C, Sun J, Chen X, Jing X (2009) Polymer 50(18):4308–4316

    Article  CAS  Google Scholar 

  19. Luo YL, Yu W, Xu F, Zhang LL (2012) J Polym Sci A Polym Chem 50(10):2053–2067

    Article  CAS  Google Scholar 

  20. Schmaljohann D (2006) Adv Drug Deliv Rev 58(15):1655–1670

    Article  CAS  Google Scholar 

  21. Chen G, Jiang M (2011) Chem Soc Rev 40(5):2254–2266

    Article  CAS  Google Scholar 

  22. Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A (2012) Nat Commun 3:603

    Article  Google Scholar 

  23. Li J (2010) NPG Asia Mater 2(3):112–118

    Article  Google Scholar 

  24. Zhao S, Lee J, Xu W (2009) Carbohyd Res 344(16):2201–2208

    Article  CAS  Google Scholar 

  25. Ping Y, Wu D, Kumar JN, Cheng W, Lay CL, Liu Y (2013) Biomacromolecules 14(6):2083–2094

    Article  CAS  Google Scholar 

  26. Li J, Ni X, Leong KW (2003) J Biomed Mater Res A 65a(2):196–202

    Article  CAS  Google Scholar 

  27. Harada A, Kamachi M (1990) Macromolecules 23(10):2821–2823

    Article  CAS  Google Scholar 

  28. Harada A, Li J, Kamachi M (1992) Nature 356(6367):325–327

    Article  CAS  Google Scholar 

  29. Harada A, Li J, Kamachi M (1993) Macromolecules 26(1):5698–5703

    Article  CAS  Google Scholar 

  30. Zhang T, Li G, Guo L, Chen H (2012) Int J Biol Macromol 51(5):1109–1115

    Article  CAS  Google Scholar 

  31. Wang SS, Hsieh PL, Chen PS, Chen YT, Jan JS (2013) Colloids Surf B: Biointerfaces 111C:423–431

    Article  Google Scholar 

  32. Gu J, Xia F, Wu Y, Qu X, Yang Z, Jiang L (2007) J Control Release 117(3):396–402

    Article  CAS  Google Scholar 

  33. Kalagasidis Krušić M, Ilić M, Filipović J (2009) Polym Bull 63(2):197–211

    Article  Google Scholar 

  34. Yuan W, Ren J (2009) J Polyme Sci A Polym Chem 47:2754–2762

    Article  CAS  Google Scholar 

  35. Zou H, Guo W, Yuan WZ (2013) J Mater Chem B 1(45):6235–6244

    Article  CAS  Google Scholar 

  36. Rauwald U, Barrio JD, Loh XJ, Scherman OA (2011) Chem Commun 47(21):6000–6002

    Article  CAS  Google Scholar 

  37. Okada Y, Tanaka F (2005) Macromolecules 38(10):4465–4471

    Article  CAS  Google Scholar 

  38. Tanaka F, Koga T, Winnik FM (2008) Phys Rev Lett 101(2):028302

    Article  Google Scholar 

  39. Inoue H, Kuwahara S, Katayama K (2013) Phys Chem Chem Phys 15(11):3814–3819

    Article  CAS  Google Scholar 

  40. Li CL, Ye XD, Ding YW, Liu SL (2012) Chin J Chem Phys 25(4):389–397

    Article  CAS  Google Scholar 

  41. Zhang JT, Huang SW, Cheng SX, Zhuo RX (2004) J Polym Sci A Polym Chem 42(5):1249–1254

    Article  CAS  Google Scholar 

  42. Taşdelen B, Kayaman-Apohan N, Güven O, Baysal BM (2005) Radiat Phys Chem 73(6):340–345

    Article  Google Scholar 

  43. Zhang JT, Huang SW, Xue YN, Liu J, Zhuo RX (2005) Chin J Polym Sci 23(5):513–519

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 21004053) and the Opening Foundation of Zhejiang Provincial Top Key Discipline (No. 20121109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mi Zhou or Xin Qian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1851 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Ye, X., Liu, K. et al. Tunable thermo-responsive supramolecular hydrogel: design, characterization, and drug release. J Polym Res 22, 170 (2015). https://doi.org/10.1007/s10965-015-0804-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0804-5

Keywords

Navigation