Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using silver nanoparticles deposited on polypyrrole nanofibers

  • Khadijeh Ghanbari
  • Nahid Hajheidari
Original Paper


Silver nanoparticles modified polypyrrole (PPy) nanofibers were fabricated and used for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) with good selectivity and high sensitivity. Polypyrrole nanofibers were prepared through electrodeposition, while silver nanoparticles were deposited on PPy nanofiber by electrodeposition and electrochemical oxidation in situ. The morphology and structure of silver nanoparticles/polypyrrole nanocomposite (Ag/PPy) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR). Compared with the bare glassy carbon electrode (GCE) and PPy/GCE, Ag/PPy modified GCE (Ag-PPy/GCE) exhibited much higher electrocatalytic activities toward oxidation of AA, DA, and UA with increasing the peak currents and decreasing the oxidation overpotentials. Cyclic voltammetry (CV) results showed that DA, AA, and UA could be detected selectively and sensitively at Ag-PPy/GCE with peak-to-peak separation of 120 mV and 170 mV for AA-DA and DA-UA, respectively. The calibration curves for AA, DA, and UA were obtained in the range of 10–580 μM, 0.5–155 μM and 2–100 μM, respectively. The lowest detection limits (S/N = 3) were 1.8 μM, 0.1 μM, and 0.5 μM for AA, DA, and UA, respectively. With good selectivity and sensitivity, the present method was applied to determination of DA in injectable medicine and UA in urine sample.


Silver nanoparticles Polypyrrole nanofiber Ascorbic acid Uric acid Dopamine 



The authors gratefully acknowledge from the Research Council of Alzahra University and National Elites Fundation (Iran) for financial support to our research group.


  1. 1.
    Shi W, Liu C, Song Y, Lin N, Zhou S, Cai X (2012) An ascorbic acid amperometric sensor using over-oxidized polypyrrole and palladium nanoparticles composites. Biosens Bioeletron 38:100–106CrossRefGoogle Scholar
  2. 2.
    Zhang X, Cao Y, Yu S, Yang E, Xi P (2013) An electrochemical biosensor for ascorbic acid based on carbon-supported PdNi nanoparticles. Biosens Bioeletron 44:183–190CrossRefGoogle Scholar
  3. 3.
    Zeng Y, Zhou Y, Kong L, Zhou T, Shi G (2013) A novel composite of SiO2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine. Biosens Bioeletron 45:25–33CrossRefGoogle Scholar
  4. 4.
    Ulubay S, Dursun Z (2010) Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid. Talanta 80:1461–1466CrossRefGoogle Scholar
  5. 5.
    Benes FM (2001) Carlsson and the discovery of dopamine. Trends Pharmacol Sci 22:46–47Google Scholar
  6. 6.
    Huang S, Liao H, Chen D (2010) Simultaneous determination of norepinephrine, uric acid, and ascorbic acid at a screen printed carbon electrode modified with polyacrylic acid-coated multi-wall carbon nanotubes. Biosens Bioeletron 25:2351–2355CrossRefGoogle Scholar
  7. 7.
    Lakshmi D, Whitcombe MJ, Davis F, Sharma PS, Prasad BB (2011) Electrochemical detection of uric acid in mixed and clinical samples. Electroanalysis 23:305–320CrossRefGoogle Scholar
  8. 8.
    Culleton BF, Larson MG, Kannel WB, Levy D (1999) Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med 131:7–13CrossRefGoogle Scholar
  9. 9.
    Vulcu A, Grosan C, Muresan LM, Pruneanu S, Olenic L (2013) Modified gold electrodes based on thiocytosine/guanine-gold nanoparticles for uric and ascorbic acid determination. Electrochim Acta 88:839–846CrossRefGoogle Scholar
  10. 10.
    Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334:345–348CrossRefGoogle Scholar
  11. 11.
    Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60:769A–793ACrossRefGoogle Scholar
  12. 12.
    Chih YK, Yang MC (2013) An 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)-immobilized electrode for the simultaneous detection of dopamine and uric acid in the presence of ascorbic acid. Bioelectrochem 91:44–51CrossRefGoogle Scholar
  13. 13.
    Sun CL, Lee HH, Yang JM, Wu CC (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioeletron 26:3450–3455CrossRefGoogle Scholar
  14. 14.
    Gopalan AI, Lee KP, Manesh KM, Santhosh P, Kim JH, Kang JS (2007) Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode. Talanta 71:1774–1781CrossRefGoogle Scholar
  15. 15.
    Safavi A, Moradlou O, Tajabadi F (2006) Simultaneous determination of dopamine, ascorbic acid, and uric acid ysing carbon ionic liquid electrode. Anal Biochem 359:224–229CrossRefGoogle Scholar
  16. 16.
    Wu J, Suls J, Sansen W (2000) Amperometric determination of ascorbic acid on screen-printing ruthenium dioxide electrode. Electrochem Commun 2:90–93CrossRefGoogle Scholar
  17. 17.
    Yang YJ, Li W (2014) CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens Bioeletron 56:300–306CrossRefGoogle Scholar
  18. 18.
    Li Y, Du J, Yang J, Liu D, Lu X (2012) Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid using single-walled carbon nanotubes modified electrode. Colloids Surf B Biointerfaces 97:32–36CrossRefGoogle Scholar
  19. 19.
    Ahmar H, Fakhari AR, Nabid MR, Tabatabaei Rezaei SJ, Bide Y (2012) Electrocatalytic oxidation of oxalic acid on palladium nanoparticles encapsulated on polyamidoamine dendrimer-grafted multi-walled carbon nanotubes hybrid material. Sens Actuators B 171–172:611–618CrossRefGoogle Scholar
  20. 20.
    Tashkhourian J, Hormozi Nezhad MR, Khodavesi J, Javadi S (2009) Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid. J Electroanal Chem 633:85–91CrossRefGoogle Scholar
  21. 21.
    Berdre MD, Basavaraja S, Deshpande R, Balaji DS, Venkataraman A (2010) Preparation and characterization of polypyrrole silver nanocomposites via interfacial polymerization. Int J Polymer Mater 59:531–543CrossRefGoogle Scholar
  22. 22.
    Ghanbari K (2014) Fabrication of silver nanoparticles–polypyrrole composite modified electrode for electrocatalytic oxidation of hydrazine. Synth Met 195:234–240CrossRefGoogle Scholar
  23. 23.
    Chen C, Chiu M, Sheu J, Wei K (2008) Photoresponses and memory effects in organic thin film transistors incorporating poly(3-hexylthiophene)/CdSe quantum dots. Appl Phys Lett 92:143105-1–143105-3Google Scholar
  24. 24.
    Chiu M, Chen C, Sheu J, Wei K (2009) An optical programming/electrical erasing memory device: organic thin film transistors incorporating core/shell CdSe@ZnSe quantum dots and poly(3-hexylthiophene). Org Electron 10:769–774CrossRefGoogle Scholar
  25. 25.
    Chen X, Parker SG, Zou G, Su W, Zhang Q (2010) β-cyclodextrin-functionalized silver nanoparticles for the naked eye detection of aromatic isomers. ACS Nano 4:6387–6394CrossRefGoogle Scholar
  26. 26.
    Liu CJ, Burghaus U, Besenbacher F, Wang ZL (2010) Preparation and characterization of nanomaterials for sustainable energy production. ACS Nano 4:5517–5526CrossRefGoogle Scholar
  27. 27.
    Zeng Q, Jiang X, Yu A, Lu G (2007) Growth mechanisms of silver nanoparticles: a molecular dynamics study. Nanotechnology 18:035708–035714CrossRefGoogle Scholar
  28. 28.
    Jin R, Cao YC, Hao E, Metraux GS, Schatz GC, MirKin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490CrossRefGoogle Scholar
  29. 29.
    Severin N, Kirstein S, Sokolov SM, Rabe JP (2009) Rapid trench channeling of graphenes with catalytic silver nanoparticles. Nano Lett 9:457–461CrossRefGoogle Scholar
  30. 30.
    Davarpanah J, Kiasat AR (2013) Catalytic application of silver nanoparticles immobilized to rice husk-SiO2-aminopropylsilane composite as recyclable catalyst in the aqueous reduction of nitroarenes. Catal Commun 41:6–11CrossRefGoogle Scholar
  31. 31.
    Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N et al (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253CrossRefGoogle Scholar
  32. 32.
    Ajitha B, Ashok Kumar Reddy Y, Sreedhara Reddy P (2015) Enhanced antimicrobial activity of silver nanoparticles with controlled particle size by pH variation. Powder Technol 269:110–117CrossRefGoogle Scholar
  33. 33.
    Zeng R, Rong MZ, Zhang MQ, Liang HC, Zeng HM (2002) Laser ablation of polymer-based silver nanocomposites. Appl Surf Sci 187:239–247CrossRefGoogle Scholar
  34. 34.
    Ustarroz J, Gupta U, Hubin A, Bals S, Terryn H (2010) Electrodeposition of Ag nanoparticles onto carbon coated TEM grids: a direct approach to study early stages of nucleation. Electrochem Commun 12:1706–1709CrossRefGoogle Scholar
  35. 35.
    Rezaei B, Khalili Boroujeni M, Ensafi AA (2014) A novel electrochemical nanocomposite imprinted sensor for the determination of lorazepam based on modified polypyrrole@sol–gel@gold nanoparticles/pencil graphite electrode. Electrochim Acta 123:332–339CrossRefGoogle Scholar
  36. 36.
    Allena NS, Murray KS, Fleming RJ, Saunders BR (1997) Physical properties of polypyrrole films containing trisoxalatometallate anions and prepared from aqueous solution. Synth Met 87:237–247CrossRefGoogle Scholar
  37. 37.
    Tambolia MS, Kulkarni MV, Patil RH, Gade WN, Navale SC, Kale BB (2012) Nanowires of silver–polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf B Biointerfaces 92:35–41CrossRefGoogle Scholar
  38. 38.
    Chen C, Wang L, Jiang G, Zhou J, Chen X, Yu H (2006) Study on the synthesis of silver nanowires with adjustable diameters through the polyol process. Nanotechnology 17:3933–3938CrossRefGoogle Scholar
  39. 39.
    Ye D, Luo L, Ding Y, Chen Q, Liu X (2011) A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode. Analyst 136:4563–4569CrossRefGoogle Scholar
  40. 40.
    Yang X, Li L, Shang S, Pan G, Yu X, Yan G (2010) Facial synthesis of polypyrrole/silver nanocomposites at the water/ionic liquid interface and their electrochemical properties. Mat Lett 64:1918–1920CrossRefGoogle Scholar
  41. 41.
    Babu K, Dhandapani P, Maruthamuthu S, Kulandainathan MA (2012) One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property. Carbohydr Polym 90:1557–1563CrossRefGoogle Scholar
  42. 42.
    Yang L, Liu D, Hung J, You T (2014) Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide midiied electrode. Sens Actuators B 193:166–172CrossRefGoogle Scholar
  43. 43.
    Hathoot AA, Yousef US, Shatla AS, Abdel-Azzem M (2012) Voltammetric simultaneous determination of glucose, ascorbic acid and dopamine on glassy carbon electrode modified by NiNPs@poly 1,5-diaminonaphthalene. Electrochim Acta 85:531–537CrossRefGoogle Scholar
  44. 44.
    Noroozifar M, Khorasani-Motlagh M, Taheri A (2010) Preparation of silver hexacyanoferratenanoparticles and its application for the simultaneous determination of ascorbic acid, dopamine and uric acid. Talanta 80:1657–1664CrossRefGoogle Scholar
  45. 45.
    Shankaran DR, Limura K, Kato T (2003) Simultaneous determination of ascorbic acid and dopamine at a sol–gel composite electrode. Sens Actuators B 94:73–80CrossRefGoogle Scholar
  46. 46.
    Hu G, Guo Y, Shao S (2009) Simultaneous determination of dopamine and ascorbic acid using the Nano-gold self-assembled glassy carbon electrode. Electroanalysis 21:1200–1206CrossRefGoogle Scholar
  47. 47.
    Zhang W, Chai Y, Yuan R, Han J, Chen S (2013) Deposited gold nanocrystals enhanced porous PTCA-Cys layer for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens Actuators B 183:157–162CrossRefGoogle Scholar
  48. 48.
    Hu W, Sun D, Ma W (2010) Silver doped poly(L-valine) modified glassy carbon electrode for the simultaneous determination of uric acid, ascorbic acid and dopamine. Electroanalysis 22:584–589CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Faculty of Physic ChemistryAlzahra UniversityVanakIran

Personalised recommendations