Studies on the ambient temperature crosslinking of latex films based on natural rubber grafted with poly(diacetone acrylamide) using DMTA

  • Bencha Thongnuanchan
  • Rattanawadee Ninjan
  • Azizon Kaesaman
  • Charoen Nakason
Original Paper


The concept of crosslinking natural rubber (NR) latex particles bearing diacetone acrylamide (DAAM) functional groups with a hydrazide crosslinker during film formation has been investigated using dynamic mechanical thermal analysis (DMTA). First, graft copolymers of NR and poly(diacetone acrylamide) prepared using 5 and 10 wt% of DAAM (abbreviated as NR-g-PDAAM5 and NR-g-PDAAM10, respectively) were synthesized. Then the dynamic mechanical properties of the cast NR-g-PDAAM latex films were measured. Two separate peaks were observed in tan δ versus temperature. The first peak appeared at −62 °C, which corresponds to glass transition of the NR phase. The second peak at −23 °C for NR-g-PDAAM5 (-18 °C for NR-g-PDAAM10) was tentatively attributed to the characteristics of NR-g-PDAAM phase. Furthermore, a shift to higher temperature of the tan δ peak corresponding to the NR-g-PDAAM phase was observed in the NR-g-PDAAM latex films, when adipic acid dihydrazide (ADH) was added prior to film casting. The added ADH increased the thermal energy required for molecular mobility in the NR-g-PDAAM phase of the cast film, providing evidence of crosslinking between the DAAM functional groups and the ADH during film formation.


Graft copolymers Natural rubber Diacetone acrylamide Latex film 



This work was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission. The authors would like to thank the Research and Development Office (RDO) and Assoc. Prof. Seppo Karrila for editing this article.


  1. 1.
    Kabara JJ, Lopez J, Robert CF (2006) Natuurrubber 41:1–2Google Scholar
  2. 2.
    Kuriakose AP (1996) In: Salamone JC (ed) Polymeric materials encyclopedia. New York, CRC PressGoogle Scholar
  3. 3.
    Blackley DC (1997) Polymer latices: science and technology, vol 3, 2nd edn. Chapman and Hall, LondonCrossRefGoogle Scholar
  4. 4.
    Chauvin B, Mangere JL (2002) U.S. Patent 20020180078 A1Google Scholar
  5. 5.
    Higashira T, Yokota A, Matsumoto N (2010) U.S. Patent 20100261004 AGoogle Scholar
  6. 6.
    WHO (2001) Environmental health criteria 221: Zinc, World Health Organization. International Programme on Chemical Safety, GenevaGoogle Scholar
  7. 7.
    Kessel N, Illsley DR, Keddie JL (2008) J Coat Technol Res 3:285–297CrossRefGoogle Scholar
  8. 8.
    Foster AB, Lovell PA, Rabjohns MA (2009) Polymer 50:1654–1670CrossRefGoogle Scholar
  9. 9.
    Zhang X, Liu Y, Huang H, Li Y, Chen H (2012) J Appl Polym Sci 123:1822–1832CrossRefGoogle Scholar
  10. 10.
    Mori A, Tashiro K, Makita K, Takatani M, Okamato T (2005) J Wood Sci 41:33–37CrossRefGoogle Scholar
  11. 11.
    Mori A, Tashiro K, Makita K, Takatani M, Okamato T (2005) J Wood Sci 41:38–41CrossRefGoogle Scholar
  12. 12.
    Tho NV, Kadir MOA, Hashim AS (2002) Rubber Chem Technol 75:111–118CrossRefGoogle Scholar
  13. 13.
    Kalkornsurapranee E, Sahakaro K, Kaesaman A, Nakason C (2009) J Appl Polym Sci 114:587–597CrossRefGoogle Scholar
  14. 14.
    Man SHC, Hashim AS, Akil HM (2008) J Polym Res 15:357–364CrossRefGoogle Scholar
  15. 15.
    Mark HF (2007) Encyclopedia of polymer science and technology, concise, 2nd edn. Wiley, New JerseyGoogle Scholar
  16. 16.
    Lamb DJ, Anstey JF, Fellows CM, Monteiro MJ, Gilbert RG (2001) Biomacromolecules 2:518–525CrossRefGoogle Scholar
  17. 17.
    Kangwansupamonkon W, Gilbert RG, Kiatkamjornwong S (2005) Macromol Chem Phys 206:2450–2460CrossRefGoogle Scholar
  18. 18.
    Kochthongrasamee T, Prasassarakich P, Kiatkamjornwong S (2006) J Appl Polym Sci 101:2587–2601CrossRefGoogle Scholar
  19. 19.
    Saito T, Klinklai W, Kawahara S (2007) Polymer 48:750–757CrossRefGoogle Scholar
  20. 20.
    Arayapranee W, Prasassarakich P, Rempel GL (2002) J Appl Polym Sci 83:2993–3001CrossRefGoogle Scholar
  21. 21.
    Menard KP (2008) Dynamic mechanical analysis: a practical introduction, 2nd edn. Taylor & Francis Group, FloridaCrossRefGoogle Scholar
  22. 22.
    Lee D-Y, Subramaniam N, Fellows CM, Gilbert RG (2002) J Polym Sci A Polym Chem 40:809–822CrossRefGoogle Scholar
  23. 23.
    Diez J, Bellas R, López J, Santoro G, Marco C, Ellis G (2010) J Polym Res 17:99–107CrossRefGoogle Scholar
  24. 24.
    Wicks ZW, Jones FN Jr, Pappas SP, Wicks DA (2007) Organic coatings: science and technology, 3rd edn. Wiley, New JerseyCrossRefGoogle Scholar
  25. 25.
    Harrats C, Mekhilef N (2005) In: Harrats C, Thomas S, Groeninckx G (eds) Micro- and nanostructured multiphase polymer blend systems: phase morphology and interfaces. New York, CRC PressGoogle Scholar
  26. 26.
    Ebewele RO (2000) Polymer science and technology. CRC Press, New YorkCrossRefGoogle Scholar
  27. 27.
    Radhakrishnan CK, Kumari P, Sujith A, Unnikrishnan G (2008) J Polym Res 15:161–171CrossRefGoogle Scholar
  28. 28.
    Wang J, Yang K, Zheng X (2009) J Polym Res 16:427–436CrossRefGoogle Scholar
  29. 29.
    Keawkumay C, Jarukumjorn K, Wittayakun J, Suppakarn N (2012) J Polym Res 19:9917CrossRefGoogle Scholar
  30. 30.
    Flory PJ, Rehener J (1943) Statistical mechanics of crosslinked polymer networks II. Swelling J Chem Phys 11:521–526CrossRefGoogle Scholar
  31. 31.
    Hagen R, Salmen L, Stenberg B (1996) J Polym Sci B Polym Phys 34:1997–2006CrossRefGoogle Scholar
  32. 32.
    Ellis B, Welding GN (1964) Rubber Chem Technol 37:563–570CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Bencha Thongnuanchan
    • 1
  • Rattanawadee Ninjan
    • 1
  • Azizon Kaesaman
    • 1
  • Charoen Nakason
    • 2
  1. 1.Department of Rubber Technology and Polymer Science, Faculty of Science and TechnologyPrince of Songkla UniversityPattaniThailand
  2. 2.Faculty of Science and Industrial TechnologyPrince of Songkla UniversitySurat ThaniThailand

Personalised recommendations