Advertisement

Fabrication and characterization of polyaniline by doping TX100-based two surfactants

  • Qi-Chen Zhang
  • Yuan-Yuan Zhi
  • Er-Jia Hu
  • Ji-Ping Shen
  • Qing Shen
Original Paper

Abstract

Several polyaniline, PANI, samples were inverse emulsion polymerized by doping two surfactants. Experimentally, the triton X-100, TX100, was always used and another surfactant was varied as sodiumlauryl sulfate, SLS, sodium dodecyl sulfonate, SDS, or 5-sulfosallcylic acid dehydrate, SSA, respectively. To compare with the pure or only TX100-doped PANI, the PANI doped by two surfactants all showed enhanced conductivity and thermal stability, e.g. the PANI/TX100+SSA presented the greatest conductivity and the PANI/TX100+SDS presented the best thermal stability. The conductivity enhancement is found due to the doping induced PANI crystallinity increase. The thermal stability increase for PANI is found due probably to the surfactant structure because the symmetric double bonded structure, e.g. SDS and SLS, both showed better thermal behavior.

Keywords

Polyaniline Multi-surfactants Conductivity Thermal stability Inverse emulsion polymerization 

Notes

Acknowledgement

This work was funded by Donghua University for undergraduate researching project on fabrication of PANI.

References

  1. 1.
    Patil AO, Heeger AJ, Wud F (1988) Optical properties of conducting polymers. Chem Rev 88:183CrossRefGoogle Scholar
  2. 2.
    Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci 23:1443CrossRefGoogle Scholar
  3. 3.
    Palaniappan S, John A (2008) Polyaniline materials by emulsion polymerization pathway. Prog Polym Sci 33:732CrossRefGoogle Scholar
  4. 4.
    Huang WS, Humphrey BD, MacDiarmid AG (1986) Syntheses and applications of conducting polymer polyaniline nanofibers. J Chem Soc Faraday Trans 82:2385CrossRefGoogle Scholar
  5. 5.
    MacDiarmid AG, Epstein A (1989) Polyanilines: a novel class of conducting polymers. J Faraday Discuss Chem Soc 88:317CrossRefGoogle Scholar
  6. 6.
    Urbach B, Korbakov N, Bar-David Y, Yitzchaik S, Saar A (2007) Composite structures of polyaniline and mesoporous silicon. J Phys Chem C 111:16586CrossRefGoogle Scholar
  7. 7.
    Harlev E, Gulakhmedova T, Rubinovich I, Aizenshtein G (1996) A new method for the preparation of conductive polyaniline solutions: application to liquid crystal devices. Adv Mater 8:994CrossRefGoogle Scholar
  8. 8.
    Anderson MR, Mattes BR, Reiss H, Kaner RB (1991) Conjugated polymer films for gas separations. Science 252:1412CrossRefGoogle Scholar
  9. 9.
    Bhadra S, Chattopadhyay S, Singha NK, Khastgir D (2007) Effect of different reaction parameters on the conductivity and dielectric properties of polyaniline synthesized electrochemically and modeling of conductivity against reaction parameters through regression analysis. J Polym Sci B 45:2046CrossRefGoogle Scholar
  10. 10.
    Bhadra S, Singha NK, Khastgir D (2008) Mechanical, dynamic mechanical, morphological, thermal behavior and processability of polyaniline and ethylene 1-octene based semi-conducting composites. Eur Polym J 44:1763CrossRefGoogle Scholar
  11. 11.
    Dong JQ, Shen Q (2009) Enhancement in solubility and conductivity of polyaniline with lignosulfonate modified carbon nanotube. J Polym Sci B 47:2036CrossRefGoogle Scholar
  12. 12.
    Dong JQ, Shen Q (2012) Comparison of the properties of PANI doped by lignosulfonates with three different ions. J Appl Polym Sci 126(S1):E10CrossRefGoogle Scholar
  13. 13.
    Fu GD, Li GL, Neoh KG, Kang ET (2011) Hollow polymeric nanostructures-synthesis, morphology and function. Prog Polym Sci 36:127CrossRefGoogle Scholar
  14. 14.
    Wan MX (2008) A template-free method towards conducting polymer nanostructures. Adv Mater 20:2926CrossRefGoogle Scholar
  15. 15.
    Stejskal J, Omastova M, Fedorova S, Prokes J, Trchova M (2003) Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer 44:1353CrossRefGoogle Scholar
  16. 16.
    Kinlen PJ, Frushour BG, Ding Y, Menon V (1999) Synthesis and characterization of organically soluble polyaniline block copolymers. Synth Met 101:758CrossRefGoogle Scholar
  17. 17.
    Palaniappan S (2002) Preparation of polyaniline-sulfate salt by emulsion and aqueouspolymerization pathway without using protonic acid. Polym Adv Technol 13:54CrossRefGoogle Scholar
  18. 18.
    Xia H, Wang Q, Xia H, Wang Q (2001) Synthesis and characterization of conductive polyaniline nanoparticles through ultrasonic assisted inverse microemulsion polymerization. J Nanoparticle Res 3:401CrossRefGoogle Scholar
  19. 19.
    Rao PS, Subrahmanya S, Sathyanarayana DN (2002) Inverse emulsion polymerization: a new route for the synthesis of conducting polyaniline. Synth Met 128:311CrossRefGoogle Scholar
  20. 20.
    Rao PS, Sathyanarayana DN, Palaniappan S (2002) Polymerization of aniline in an organic peroxide system by the inverted emulsion process. Macromolecules 35:4988CrossRefGoogle Scholar
  21. 21.
    Gong XY, Liu J, Baskaran S, Voise RD, Young JS (2000) Surfactant-assisted processing of carbon nanotube/polymer composites. Chem Mater 12:1049CrossRefGoogle Scholar
  22. 22.
    Vaidyaa SG, Rastogi S, Aguirre A (2010) Surfactant assisted processable organic nanocomposite dispersions of polyaniline-single wall carbon nanotubes. Synth Met 160:134CrossRefGoogle Scholar
  23. 23.
    Ayad M, El-Hefnawy G, Zaghlol S (2013) Facile synthesis of polyaniline nanoparticles; its adsorption behavior. Chem Eng J 217:460CrossRefGoogle Scholar
  24. 24.
    Ichinohe D, Arai T, Kise H (1997) Synthesis of soluble polyaniline in reversed micellar systems. Synth Met 84:75CrossRefGoogle Scholar
  25. 25.
    Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783CrossRefGoogle Scholar
  26. 26.
    Shioi A, Hatton TA (2002) Model for formation and growth of vesicles in mixed anionic/cationic (SOS/CTAB) surfactant systems. Langmuir 18:7341CrossRefGoogle Scholar
  27. 27.
    Zhou DH, Li YH, Wang JY, Xu P, Han XJ (2011) Synthesis of polyaniline nanofibers with high electrical conductivity from CTAB–SDBS mixed surfactants. Mater Lett 65:3601CrossRefGoogle Scholar
  28. 28.
    Fan L, Guo R (2008) Growth of dendritic silver crystals in CTAB/SDBS mixed-surfactant solutions. Cryst Growth Des 8:2150CrossRefGoogle Scholar
  29. 29.
    Chen CF, Lei IA, Chiu WY (2012) Mixed-surfactant-induced morphology change of polyaniline. J Appl Polym Sci 126:E195CrossRefGoogle Scholar
  30. 30.
    Saravanan C, Palaniappan S, Chandezon F (2008) Synthesis of nanoporous conducting polyaniline using ternary surfactant. Mater Lett 62:882CrossRefGoogle Scholar
  31. 31.
    Girija TC, Sangarranarayanan MV (2006) Polyaniline-based nickel electrodes for electrochemical supercapacitors—influence of triton X-100. J Power Sources 159:1519CrossRefGoogle Scholar
  32. 32.
    Gu ZJ, Wang JT, Li LL, Chen LF, Shen Q (2014) Formation of polyaniline nanotubes with different pore shapes using α-, β- and γ-cyclodextrins as templates. Mater Lett 117:66CrossRefGoogle Scholar
  33. 33.
    Gu ZJ, Ye JR, Song W, Shen Q (2014) Synthesis of polyaniline nanotubes with controlled rectangular or square pore shape. Mater Lett 121:12CrossRefGoogle Scholar
  34. 34.
    Gu ZJ, Zhang QC, Shen Q (2015) Synthesis and comparison of polyaniline nanofibers templated by α-, β- and γ-cyclodextrins. J Polym Res 22(2):1–4CrossRefGoogle Scholar
  35. 35.
    Prathap MUA, Thakur B, Sawant SN, Srivastava R (2012) Synthesis of mesostructured polyaniline using mixed surfactants, anionic sodium dodecylsulfate and non-ionic polymers and their applications in H2O2 and glucose sensing. Colloids Surf B 89:108–116CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Qi-Chen Zhang
    • 1
  • Yuan-Yuan Zhi
    • 1
  • Er-Jia Hu
    • 1
  • Ji-Ping Shen
    • 1
  • Qing Shen
    • 1
  1. 1.State Key Laboratory for Modification of Chemical Fiber and Polymer MaterialsPolymer Department of Donghua UniversityShanghaiPeople’s Republic of China

Personalised recommendations