Synthesis and characterization of thermoreversible K-Ionomers based on butyl rubber: a simple one-step crosslinking method and a novel crosslinking system

  • Lin Li
  • Shuai Zhao
  • Chunhua Chen
  • Zhenxiang Xin
Original Paper


A simple one-step thermoreversible polymer crosslinking method and a novel reversible ionic crosslinking system (maleic anhydride and KOH) have been developed which is performed on high physical mechanical properties and valuable reversibility. The system involves the acid–base reaction of maleic anhydride with potassium hydroxide to form ionic thermoreversible cross-linking network. A series of ionic thermoreversible cross-linking butyl rubber which is called K-ionomers are obtained as a function of the ratio of KOH to maleic anhydride by simple one-step solution method. The ratio is held at 5:1, the degrees of neutralization is up to 70 % that reprocessibility is possible. X-ray diffraction (XRD) shows the presence of microphase-separated aggregates for K-ionomer that act as physical cross-links which are responsible for its outstanding mechanical property and valuable reversiblity. Very high mechanical property in tensile strength up to 5 Mpa was obtained. The reversibility of K-ionomers is investigated in detail by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Hot stage microscopy. ATR-FTIR results show a desired shift back from carboxylate reacted with carboxylic acid to cyclic anhydrides and KOH depending on heating. Hot stage microscopy shows that the reprocessibility of K-ionomer is detected up to 169 °C.


Thermoreversible cross-linking system One-step method Neutralization Reversibility Reprocessibility 



We are grateful for the financial support of the project on preparation and structure and properties research of waste rubber powder filled rubber foaming composites (51273098/E0302) and the financial support of the project on collaborative innovation center of green tyres & rubber (2014GTR0010).


  1. 1.
    Holliday L (1975) Ionic Polymers. Applied Science Publishers, LondonGoogle Scholar
  2. 2.
    Eisenberg A (1980) Ions in Polymers. American Chemical Society, WashingtonCrossRefGoogle Scholar
  3. 3.
    Eisenberg A, Kim JS (1998) Introduction to Ionomers. Wiley, New YorkGoogle Scholar
  4. 4.
    Sijbesma RP, Meijer EW (2003) Chem Commun 5–16Google Scholar
  5. 5.
    Stadler R, de Lucca Freitas LL (1986) Colloid Polym Sci 264:773–778CrossRefGoogle Scholar
  6. 6.
    Müller M, Stadler R, Kremer F, Williams G (1995) Macromolecules 28:6942CrossRefGoogle Scholar
  7. 7.
    de Lucca Freitas L, Auschra C, Abetz V, Stadler R (1991) Colloid Polym Sci 269:566CrossRefGoogle Scholar
  8. 8.
    Holden G, Legge NR, Quirk RP (1996) Thermoplastic Elastomers: A Comprehensive Review. Hanser, MunichGoogle Scholar
  9. 9.
    Bagrodia S, Wilkes GL, Kennedy JP (1986) Polym Eng Sci 26:662CrossRefGoogle Scholar
  10. 10.
    Anthony P, De SKJ (2001) Macromol Sci Polym Rev C41:41CrossRefGoogle Scholar
  11. 11.
    Agarwal PK, Lundberg RD (1984) Macromolecules 17:1918CrossRefGoogle Scholar
  12. 12.
    MacKnight WJ, Lundberg RD (1984) Rubber Chem Technol 57:652CrossRefGoogle Scholar
  13. 13.
    Paeglis AU, Shea FXO (1988) Rubber Chem Technol 61:223CrossRefGoogle Scholar
  14. 14.
    Rousseaux DD, Drooghaag X, Sclavons M, Godard P, Carlier V, Marchand-Brynaert J (2010) Polym Degrad Stab 95(3):363–368CrossRefGoogle Scholar
  15. 15.
    Datta S, De SK, Kontos EG, Wefer JM (1996) Appl Polym Sci 61:177CrossRefGoogle Scholar
  16. 16.
    Kurian T, Khastgir D, De PP, KTripathy D, De SK (1995) Rubber World 213:41Google Scholar
  17. 17.
    Mark van der Mee (2007) Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, the NetherlandsGoogle Scholar
  18. 18.
    Sun CX, Van der Mee MAJ, Goossens JGP, Van Duin M (2006) Macromolecules 39(9):3441–3449CrossRefGoogle Scholar
  19. 19.
    Yarusso DJ, Cooper SL (1983) Macromolecules 16:1871CrossRefGoogle Scholar
  20. 20.
    Wouters MEL, Goossens JGP, Binsbergen FL (2002) Macromolecules 35:208CrossRefGoogle Scholar
  21. 21.
    Wouters MEL, Litvinov VM, Binsbergen FL, Goossens JGP, Van Duin M, Dikland HG (2003) Macromolecules 36:1147CrossRefGoogle Scholar
  22. 22.
    Grady BP, Goossens JGP, Wouters MEL (2004) Macromolecules 37:8585CrossRefGoogle Scholar
  23. 23.
    Tang QQ, Zhou MS, Yang DJ, Qiu XQ (2015) J Polym Res 22:50CrossRefGoogle Scholar
  24. 24.
    Cheng CJ, Bai XX, Zhang X, Li HX, Huang QH, Tu YM (2015) J Polym Res 22:46CrossRefGoogle Scholar
  25. 25.
    Shen Y, Qi R, Liu Q, Zhou C (2007) J Appl Polym Sci 104:3443CrossRefGoogle Scholar
  26. 26.
    Lin-Vien D, Colthup NN, Fateley WG, Grasselli JG (1991) The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic, BostonGoogle Scholar
  27. 27.
    Brozoski BA, Coleman MM, Painter PC (1984) Macromolecules 17:230CrossRefGoogle Scholar
  28. 28.
    Dauben WG, Epstein WW (1959) J Org Chem 24:1595CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Key Laboratory of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdaoChina

Personalised recommendations