Skip to main content
Log in

32.Sulfonic acid functionalization of 2-aminoterephthalate metal−organic framework and silica nanoparticles by surface initiated radical polymerization: as proton-conducting solid electrolytes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A post-polymerization method for metal–organic frameworks (MOFs) and silica nanoparticles have been developed to produce super-acidic solid nanoparticle. Thus, silica and amino-functionalized metal−organic framework [NH2-MIL-101(Al)] were functionalized with 4.4′-Azobis(4-cyanovaleric acid) (ACVA) from hydroxyl and amine groups to yield initiator anchored silica and MOF nanoparticles. Then, sulfonated polymer/MOF and sulfonated polymer/silica hybrid nanoparticles were prepared by free radical polymerization of 2-acrylamido-2-methyl-1-propane sulfonic acid [(MOF-g-PAMPS) and (Si-g-PAMPS)], initiated onto the surfaces of initiator functionalized nanoparticles. Synthesis and modification of nanoparticles were characterized by fourier transform infrared (FTIR), thermogravimetric analysis (TGA). Also, the attachment of ACVA modifier agent on the surface of silica nanoparticles was studied using X-ray photoelectron spectroscopy (XPS). FTIR and TGA results indicated that AMPS monomer was successfully grafted onto the MOF and silica nanoparticles. The grafting efficiency of PAMPS polymer onto the silica and MOF nanoparticles were estimated from TGA thermograms to be 17 and 35 % for silica and MOF nanoparticles, respectively. Morphology of MOF and silica nanoparticles before and after modification processes were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Laberty-Robert C, Valle K, Pereira F, Sanchez C (2011) Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem Soc Rev 40:961–1005

    Article  CAS  Google Scholar 

  2. Nagarale RK, Shin W, Singh PK (2010) Progress in ionic organic–inorganic composite membranes for fuel cell applications. Polym Chem 1:388–408

    Article  CAS  Google Scholar 

  3. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35:9349–9384

    Article  CAS  Google Scholar 

  4. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications-a review. J Membr Sci 259:10–26

    Article  CAS  Google Scholar 

  5. Kalappa P, Lee JH (2007) Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO2 nanocomposites for a direct methanol fuel cell. Polym Int 56:371–375

    Article  CAS  Google Scholar 

  6. Suryani CCM, Liu YL, Lee YM (2011) Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. J Mater Chem 21:7480–7486

    Article  CAS  Google Scholar 

  7. Chu F, Lin B, Qiu B, Si Z, Qiu L, Gu Z, Ding J, Yan F, Lu J (2012) Polybenzimidazole/zwitterion-coated silica nanoparticle hybrid proton conducting membranes for anhydrous proton exchange membrane application. J Mater Chem 22:18411–18417

    Article  CAS  Google Scholar 

  8. Gosalawit R, Chirachanchai S, Shishatskiy S, Nunesb SP (2008) Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs). J Membr Sci 323:337–346

    Article  CAS  Google Scholar 

  9. Cao YC, Xu C, Wu X, Wang X, Xing L, Scott K (2011) A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J Power Sources 196:8377–8382

    Article  CAS  Google Scholar 

  10. Kitagawa S, Kitaura R, Si N (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375

    Article  CAS  Google Scholar 

  11. Chen G, Wu S, Liu H, Jiang H, Li Y (2013) Palladium supported on an acidic metal–organic framework as an efficient catalyst in selective aerobic oxidation of alcohols. Green Chem 15:230–235

    Article  CAS  Google Scholar 

  12. Xiao B, Yuan Q (2009) Nanoporous metal organic framework materials for hydrogen storage. Particuology 7:129–140

    Article  CAS  Google Scholar 

  13. Tanh Jeazet HB, Staudt C, Janiak C (2012) Metal–organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans 41:14003–14027

    Article  CAS  Google Scholar 

  14. Hwa Jhung BS, Lee JH, Yoon JW, Serre C, Férey G, Chang JS (2007) Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv Mater 19:121–124

    Article  Google Scholar 

  15. Hurd JA, Vaidhyanathan R, Thangadurai V, Ratcliffe CI, Moudrakovski GL, Shimizu George KH (2009) Anhydrous proton conduction at 150 °Cin a crystalline metal–organic framework. Nat Chem 1:705–710

    Article  CAS  Google Scholar 

  16. Kitagawa H (2009) Metal–organic frameworks transported into fuel cells. Nat Chem 1:689–690

    Article  CAS  Google Scholar 

  17. Zheng GL, Yang GC, Song SY, Songa XZ, Zhang HJ (2014) Constructing porous MOF based on the assembly of layer framework and p-sulfonatocalix[4]arene nanocapsule with proton-conductive property. CrystEngComm 16:64–68

    Article  CAS  Google Scholar 

  18. Foo ML, Horike S, Fukushima T, Hijikata Y, Kubota Y, Takataf M, Kitagawa S (2012) Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6 (UiO-66). Dalton Trans 41:13791–13794

    Article  CAS  Google Scholar 

  19. Goesten MG, Juan-Alcañiz J, Ramos-Fernandez EV, Sankar Gupta KBS, Eli S, Bekkum H, Gascon J, Kapteijn F (2011) Sulfation of metal–organic frameworks: opportunities for acid catalysis and proton conductivity. J Catal 281:177–187

    Article  CAS  Google Scholar 

  20. Smith JJ, Zharov I (2009) Preparation and proton conductivity of sulfonated polymer-modified sintered and self-assembled silica colloidal crystals. Chem Mater 21:2013–2019

    Article  CAS  Google Scholar 

  21. Brozek EM, Mollard AH, Zharov I (2014) Silica nanoparticles carrying boron-containing polymer brushes. J Nanoparticle Res 16:2407–2418

    Article  Google Scholar 

  22. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Zeinali E, Salami-Kalajahi M (2014) In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups. J Polym Res 21:333–343

    Article  Google Scholar 

  23. Gao B, Li D, Lei Q (2011) Preparation of high PMMA grafted particle SiO2 using surface initiated free radical polymerization. J Polym Res 18:1519–1526

    Article  CAS  Google Scholar 

  24. Gao B, Fang L, Wang X, Men J (2012) Constituting redox initiation system of mercapto-cerium salt and realizing highly effective graft-polymerization of MAA on surfaces of silica gel particles. J Polym Res 19:4–13

    Article  Google Scholar 

  25. Ahmadian-Alam L, Haddadi-Asl V, Roghani-Mamaqani H, Hatami L, Salami-Kalajahi M (2012) Use of clay-anchored reactive modifier for the synthesis of poly (styrene-co-butyl acrylate)/clay nanocomposite via in situ AGET ATRP. J Polym Res 19:9773–9784

    Article  Google Scholar 

  26. Deng Y, Li Y, Dai J, Lang M, Huang X (2011) An efficient way to functionalize graphene sheets with presynthesized polymer via ATNRC chemistry. J Polym Sci A Polym Chem 49:1582–1590

    Article  CAS  Google Scholar 

  27. Lei Z, Li Y, Wei X (2008) A facile two-step modifying process for preparation of poly(SStNa)-grafted Fe3O4/SiO2 particles. J Solid State Chem 181:480–486

    Article  CAS  Google Scholar 

  28. Perruchot C, Khan MA, Kamitsi A, Armes SP (2001) Synthesis of well-defined, polymer-grafted silica particles by aqueous ATRP. Langmuir 17:4479–4481

    Article  CAS  Google Scholar 

  29. Bromberg L, Su X, Hatton TA (2013) Heteropolyacid-functionalized aluminum 2‑aminoterephthalate metal-organic frameworks as reactive aldehyde sorbents and catalysts. ACS Appl Mater Interfaces 5:5468–5477

    Article  CAS  Google Scholar 

  30. Feng L, Ye J, Qiang X, Zhang H (2011) Syntheses of an Azo-group-bound silica initiator and silica–polystyrene composites. J Appl Polym Sci 121:454–461

    Article  CAS  Google Scholar 

  31. Salarizadeh P, Abdollahi M, Javanbakht M (2012) Modification of silica nanoparticles with hydrophilic sulfonated polymers by using surface-initiated redox polymerization. Iran Polym J 21:661–668

    Article  CAS  Google Scholar 

  32. Park J, Seo J, Ahn S, Kim J, Kang S (2010) Surface modification of silica nanoparticles with hydrophilic polymers. J Ind Eng Chem 16:517–522

    Article  CAS  Google Scholar 

  33. Laruelle G, Parvole J, Francois J, Billon L (2004) Block copolymer grafted-silica particles: a core/double shell hybrid inorganic/organic material. Polymer 45:5013–5020

    Article  CAS  Google Scholar 

  34. Le Normand F, Hommet J, Szörényi T, Fuchs C, Fogarassy E (2001) XPS study of pulsed laser deposited CNx films. Phys Rev B 64:235416–235427

    Article  Google Scholar 

  35. Sun W, Chen Y, Zhou L, He X (2006) Preparing polymer brushes on poly(vinylidene fluoride) films by free radical polymerization. J Appl Polym Sci 101:857–862

    Article  CAS  Google Scholar 

  36. Tang E, Fu C, Wang S, Dong S, Zhao F, Zhao D (2012) Graft polymerization of styrene monomer initiated by azobis(4-cyanovaleric acid) anchored on the surface of ZnO nanoparticles and its PVC composite film. Powder Technol 218:5–10

    Article  CAS  Google Scholar 

  37. Haque E, Lo V, Minett AI, Harris AT, Church TL (2014) Dichotomous adsorption behavior of dyes on an amino-functionalised metal–organic framework, amino-MIL-101(Al). J Mater Chem A 2:193–203

    Article  CAS  Google Scholar 

  38. Seoane B, Téllez C, Coronas J, Staudt C (2013) NH2-MIL-53(Al) andNH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation. Sep Purif Technol 111:72–81

    Article  CAS  Google Scholar 

  39. Chen X, Vinh-Thang H, Rodrigue D, Kaliaguine S (2012) Amine-functionalized MIL-53 metal − organic framework in polyimide mixed matrix membranes for CO2/CH4 separation. Ind Eng Chem Res 51:6895–6906

    Article  CAS  Google Scholar 

  40. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82

    Article  CAS  Google Scholar 

  41. Sarac AS (1999) Redox polymerization. Prog Polym Sci 24:1149–1204

    Article  CAS  Google Scholar 

  42. Bombalski L, Min K, Dong H, Tang C, Matyjaszewski K (2007) Preparation of well-defined hybrid materials by ATRP in mini-emulsion. Macromolecules 40:7429–7432

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, H., Ahmadian-Alam, L. 32.Sulfonic acid functionalization of 2-aminoterephthalate metal−organic framework and silica nanoparticles by surface initiated radical polymerization: as proton-conducting solid electrolytes. J Polym Res 22, 67 (2015). https://doi.org/10.1007/s10965-015-0708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0708-4

Keywords

Navigation