Journal of Polymer Research

, 22:21 | Cite as

Synergistic effects of rare earth oxides on intumescent flame retardancy of Nylon 1010/ethylene-vinyl-acetate rubber thermoplastic elastomers

  • Hongmei ZhangEmail author
  • Xianbo Lu
  • Yong Zhang
Original Paper


Synergistic effects of two kinds of rare earth oxides (REOs), samarium oxide (Sm2O3) or lanthanum oxide (La2O3) on the intumescent flame retardancy of Nylon 1010/ethylene-vinyl-acetate rubber (EVM) thermoplastic elastomers (TPE) were studied systemically. The limiting oxygen index (LOI) of intumescence flame retardant (IFR)-TPE increased from 30.5 to 32.5 and 34 when 0.5 wt% of IFR was substituted by La2O3 and Sm2O3, respectively. Sm2O3 showed higher synergistic effectivity than La2O3. Cone calorimetry tests confirmed that REOs enhanced flame retardancy of IFR-TPE. Smoke and CO production rate slightly decreased after incorporation of REOs as compared to IFR-TPEs without REOs, indicating relatively reduced combustion hazard. By thermalgravimetric analyses (TGA), it was found that the presence of REOs promoted the esterification and carbonization process in low-temperature range while enhanced the thermal stability of IFR and IFR-TPEs in high-temperature range. X-ray diffraction (XRD) proved that the interaction of Sm2O3 with IFR resulted in the formation of samarium phosphate (SmPO4) with high-thermal stability. Rheological measurements showed that the complex viscosities of the IFR-TPEs increased with the addition of REOs, which might aid in suppressing melt dripping. For mechanical properties, incorporation of REOs led to higher modulus, similar tensile strength but lower elongation at break as compared to IFR-TPEs without REOs.


Intumescent flame retardancy Rare earth oxide Synergistic effect Nylon 1010 Ethylene-vinyl-acetate rubber 



This work was supported by research grants from the National Natural Science Foundation of China (51073092).

Supplementary material

10965_2014_652_Fig11_ESM.gif (21 kb)
Figure S1

(GIF 20 kb)

10965_2014_652_MOESM1_ESM.tif (36 kb)
(TIFF 35 kb)


  1. 1.
    Mehrabzadeh M, Delfan N (2000) Thermoplastic elastomers of butadiene-acrylonitrile copolymer and polyamide. VI. Dynamic crosslinking by different systems. J Appl Polym Sci 77:2057–2066CrossRefGoogle Scholar
  2. 2.
    Naskar K, Noordermeer JWM (2005) Thermoplastic elastomers by dynamic vulcanization. Prog Rubber Plast Re 21:1–26Google Scholar
  3. 3.
    Katbab AA, Hrymak AN, Kasmadjian K (2008) Preparation of interfacially compatibilized PP-EPDM thermoplastic vulcanizate/graphite nanocomposites: effects of graphite microstructure upon morphology, electrical conductivity, and melt rheology. J Appl Polym Sci 107(5):3425–3433CrossRefGoogle Scholar
  4. 4.
    Mansour SA, Al-Ghoury ME, Shalaan E (2010) Thermal Properties of Graphite-Loaded Nitrile Rubber/Poly(vinyl chloride) Blends. J Appl Polym Sci 116(6):3171–3177Google Scholar
  5. 5.
    Zang Y, Li B, Xu M (2014) Flame retardancy and water resistance of novel intumescent flame-retardant oil-filled styrene-ethylene-butadiene-styrene block copolymer/polypropylene composites. J Appl Polym Sci. doi: 10.1002/app.39575 Google Scholar
  6. 6.
    Xue M, Zhang X, Wu Z (2014) A commercial phosphorous-nitrogen containing intumescent flame retardant for thermoplastic polyurethane. J Appl Polym Sci. doi: 10.1002/app.39772 Google Scholar
  7. 7.
    Oderkerk J, De Schaetzen G, Goderis B, Hellemans L, Groeninckx G (2002) Micromechanical deformation and recovery processes of Nylon-6/rubber thermoplastic vulcanizates as studied by atomic force microscopy and transmission electron microscopy. Macromolecules 35(17):6623–6629CrossRefGoogle Scholar
  8. 8.
    Oderkerk J, Groeninckx G, Soliman M (2002) Investigation of the deformation and recovery behavior of Nylon-6/rubber thermoplastic vulcanizates on the molecular level by infrared-strain recovery measurements. Macromolecules 35(10):3946–3954CrossRefGoogle Scholar
  9. 9.
    Lu X, Zhang H, Zhang Y (2014) Study on ester-amide exchange reactions between Nylon 1010 and Ethylene-vinyl acetate rubber. J Appl Polym Sci. doi: 10.1002/app.40064 Google Scholar
  10. 10.
    Lu X, Zhang H, Zhang Y (2014) Structure and properties of nylon 1010/ethylene-vinyl acetate rubber-based dynamically vulcanized thermoplastic elastomers filled with SiO2. Polym Eng Sci. doi: 10.1002/pen.23920 Google Scholar
  11. 11.
    Wu W, Wan C, Zhang Y (2013) Morphology and mechanical properties of ethylene-vinyl acetate rubber/polyamide thermoplastic elastomers. J Appl Polym Sci 130:338–344CrossRefGoogle Scholar
  12. 12.
    Wang B, Tang Q, Hong N (2011) Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene-vinyl acetate copolymer/microencapsulated ammonium polyphosphate/polyamide-6 blends. ACS Appl Mater Interfaces 3(9):3754–3761CrossRefGoogle Scholar
  13. 13.
    Casu A, Camino G, Giorgi DM, Flath D, Morone V, Zenoni R (1997) Fire-retardant mechanistic aspects of melamine cyanurate in polyamide copolymer. Polym Degrad Stab 58(3):297–302CrossRefGoogle Scholar
  14. 14.
    Huang XH, Li B, Shi BL, Li LP (2008) Investigation on interfacial interaction of flame retarded and glass fiber reinforced PA66 composites by IGC/DSC/SEM. Polymer 49(4):1049–1055CrossRefGoogle Scholar
  15. 15.
    Bourbigot S, Le Bras M, Duquesne S, Rochery M (2004) Recent advances for intumescent polymers. Macromol Mater Eng 289(6):499–511CrossRefGoogle Scholar
  16. 16.
    Yu GX (2009) Esterification over rare earth oxide and alumina promoted SO42-/ZrO2. Catal Today 148(1–2):169–173CrossRefGoogle Scholar
  17. 17.
    Sato S, Takahashi R, Kobune M (2009) Basic properties of rare earth oxides. Appl Catal A: Gen 356(1):57–63CrossRefGoogle Scholar
  18. 18.
    Camino G, Costa L, Trossarelli L (1984) Study of the mechanism of intumescence in fire retardant polymers: Part IV—evidence of ester formation in ammonium polyphosphate-pentaerythritol mixtures. Polym Deg Stab 8(2):13–22CrossRefGoogle Scholar
  19. 19.
    Ren Q, Wan C, Zhang Y (2011) An investigation into synergistic effects of rare earth oxides on intumescent flame retardancy of polypropylene/poly (octylene-co-ethylene) blends. Polym Adv Technol 22(10):1414–1421CrossRefGoogle Scholar
  20. 20.
    Li Y, Li B, Dai J (2008) Synergistic effects of lanthanum oxide on a novel intumescent flame retardant polypropylene system. Polym Deg Stab 93(1):9–16CrossRefGoogle Scholar
  21. 21.
    Almerasa X, Dabrowskia F, Le Brasa M, Delobelb R, Bourbigotc S, Marosid G, Annad P (2002) Using polyamide 6 as charring agent in intumescent polypropylene formulations II. Thermal degradation. Polym Deg Stab 77:315–323CrossRefGoogle Scholar
  22. 22.
    Rivaa A, Camino G, Fomperiec L, Amigouet P (2003) Fire retardant mechanism in intumescent ethylene vinyl acetate compositions. Polym Deg Stab 82:341–346CrossRefGoogle Scholar
  23. 23.
    Lewin M (1999) Synergistic and catalytic effects in flame retardancy of polymeric materials—an overview. J Fire Sci 17:3–19CrossRefGoogle Scholar
  24. 24.
    Almeras X, Le Bras M, Poutch F (2003) Effect of fillers on fire retardancy of intumescent polypropylene blends. Macromol Symp 198(1):435–448CrossRefGoogle Scholar
  25. 25.
    Camino G, Martinasso G, Costa L (1990) Thermal degradation of pentaerythritol diphosphate, model compound for fire retardant intumescent systems: part II-intumescence step. Polym Deg Stab 28(1):17–38CrossRefGoogle Scholar
  26. 26.
    Camino G, Martinasso G, Costa L (1990) Thermal degradation of pentaerythritol diphosphate, model compound for fire retardant intumescent systems: part I-overall thermal degradation. Polym Deg Stab 27(3):285–296CrossRefGoogle Scholar
  27. 27.
    Samyn F, Bourbigot S, Duquesne S (2007) Effect of zinc borate on the thermal degradation of ammonium polyphosphate. Thermochim Acta 456(2):134–144CrossRefGoogle Scholar
  28. 28.
    Fontaine G, Bourbigot S, Duquesne S (2008) Neutralized flame retardant phosphorus agent: facile synthesis, reaction to fire in PP and synergy with zinc borate. Polym Deg Stab 93(1):68–76CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Metal Matrix composites, School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations