Journal of Polymer Research

, 21:616 | Cite as

Crystallization kinetics of γ phase poly(vinylidene fluoride)(PVDF) induecd by tetrabutylammonium bisulfate

  • Cheng-Lu Liang
  • Zhong-Hai Mai
  • Qi Xie
  • Rui-Ying Bao
  • Wei Yang
  • Bang-Hu Xie
  • Ming-Bo Yang
Original Paper


The γ phase of poly(vinylidene fluoride) (PVDF) was induced by tetrabutylammonium bisulfate and the kinetics of isothermal and non-isothermal crystallization of the induced γ-PVDF in the absence of α phase were investigated with differential scanning calorimeter. The crystallization kinetics were evaluated on the basis of the theory of Avrami and those modified by Jeziorny, Ozawa, Liu and Mo. The Avrami exponent n of the induced γ-PVDF was evaluated and was found to be in the range of 2.4–2.9 for isothermal crystallization and in the range of 3.1−4.5 for non-isothermal crystallization, much higher than those of γ-PVDF homogeneously nucleated at high temperatures as reported in literature. Moreover, the accelerated crystallization rate of the induced γ-PVDF, even faster than the kinetically most favored α phase, was demonstrated by the drastically shortened half-time of crystallization t1/2 and enhanced crystallization rate constant K. It is shown that dominating γ-PVDF could be melt crystallized with a drastically enhanced crystallization rate with the incorporation of tetrabutylammonium bisulfate.

Graphical Abstract

The Avrami exponent n of the induced γ-PVDF in the absence of α phase was evaluated and was found to be in the range of 3.1~4.5. The values of which were much higher than those of γ-PVDF homogeneously nucleated at high temperatures as reported in literature, suggesting that the growth of spherulites was three dimensional, while the reported γ-PVDF nucleated at high temperatures usually grows one or two dimensionally in a fibrillar structure.


Poly (vinylidene fluoride) Crystallization kinetics Tetrabutylammonium bisulfate 



This work was supported by the National Natural Science Foundation of China (NNSFC Grants 51422305 and 51121001), the MOST (Grant 2012CB025902), the Fundamental Research Funds for the Central Universities (Grant 2011SCU04A03) and the Innovation Team Program of Science & Technology Department of Sichuan Province (Grant 2013TD0013).

Supplementary material

10965_2014_616_MOESM1_ESM.doc (4.5 mb)
ESM 1 (DOC 4592 kb)


  1. 1.
    Fan H, Peng Y, Li Z, Chen P, Jiang Q, Wang S (2013) J Polym Res 20:1–15CrossRefGoogle Scholar
  2. 2.
    Liu J, Lu X, Wu C, Zhao C (2013) J Polym Res 20:1–10CrossRefGoogle Scholar
  3. 3.
    Jing X, Shen X, Song H, Song F (2011) J Polym Res 18:2017–2021CrossRefGoogle Scholar
  4. 4.
    Kepler RG, Anderson RA (1992) Adv Phys 41:1–57CrossRefGoogle Scholar
  5. 5.
    Lovinger AJ (1983) Science 220:1115–1121CrossRefGoogle Scholar
  6. 6.
    Murayama N, Nakamura K, Obara H, Segawa M (1976) Ultrasonics 14:15–24CrossRefGoogle Scholar
  7. 7.
    Takahashi Y, Matsubara Y, Tadokoro H (1983) Macromolecules 16:1588–1592CrossRefGoogle Scholar
  8. 8.
    Welch GJ, Miller RL (1976) J Polym Sci B Polym Phys 14:1683–1692CrossRefGoogle Scholar
  9. 9.
    Tashiro K, Tadokoro H (1983) Macromolecules 16:961–965CrossRefGoogle Scholar
  10. 10.
    Takahashi Y, Tadokoro H (1980) Macromolecules 13:1317–1318CrossRefGoogle Scholar
  11. 11.
    Lovinger AJ (1981) Macromolecules 14:322–325CrossRefGoogle Scholar
  12. 12.
    Li J, Meng Q, Li W, Zhang Z (2011) J Appl Polym Sci 122:1659–1668CrossRefGoogle Scholar
  13. 13.
    Lopes AC, Costa CM, Tavares CJ, Neves IC, Lanceros-Mendez S (2011) J Phys Chem C 115:18076–18082CrossRefGoogle Scholar
  14. 14.
    Hasegawa R, Takahashi Y, Chatani Y, Tadokoro H (1972) Polym J 3:600–610CrossRefGoogle Scholar
  15. 15.
    Lovinger AJ, Keith HD (1979) Macromolecules 12:919–924CrossRefGoogle Scholar
  16. 16.
    Pan H, Na B (2012) J Polym Sci B Polym Phys 50:1433–1437CrossRefGoogle Scholar
  17. 17.
    Na B, Pan H, Lv R, Zhu J, Li C (2012) Mater Lett 85:37–39CrossRefGoogle Scholar
  18. 18.
    Prest WM, Luca DJ (1975) J Appl Phys 46:4136–4143CrossRefGoogle Scholar
  19. 19.
    Lovinger AJ (1980) J Polym Sci B Polym Phys 18:793–809CrossRefGoogle Scholar
  20. 20.
    Martins P, Lopes AC, Lanceros-Mendez S (2014) Prog Polym Sci 39:683–706CrossRefGoogle Scholar
  21. 21.
    Ramasundaram S, Yoon S, Kim KJ, Park C (2008) J Polym Sci B Polym Phys 46:2173–2187CrossRefGoogle Scholar
  22. 22.
    Vijayakumar RP, Khakhar DV, Misra A (2011) J Polym Sci B Polym Phys 49:1339–1344CrossRefGoogle Scholar
  23. 23.
    Wu Y, Hsu SL, Honeker C, Bravet DJ, Williams DS (2012) J Phys Chem B 116:7379–7388CrossRefGoogle Scholar
  24. 24.
    Tang CW, Li B, Sun L, Lively B, Zhong WH (2012) Eur Polym J 48:1062–1072CrossRefGoogle Scholar
  25. 25.
    Liang CL, Mai ZH, Xie Q, Bao RY, Yang W, Xie BH, Yang MB (2014) J Phys Chem B 118:9104–9111CrossRefGoogle Scholar
  26. 26.
    Li C, Zhu J, Na B, Lv R, Chen B (2013) J Appl Polym Sci. doi: 10.1002/app.40505 Google Scholar
  27. 27.
    Zhu Y, Li C, Na B, Lv R, Chen B, Zhu J (2014) Mater Chem Phys 144:194–198CrossRefGoogle Scholar
  28. 28.
    Liang CL, Xie Q, Bao RY, Yang W, Xie BH, Yang MB (2014) J Mater Sci 49:4171–4179CrossRefGoogle Scholar
  29. 29.
    Mandal A, Nandi AK (2013) ACS Appl Mater Interfaces 5:747–760CrossRefGoogle Scholar
  30. 30.
    Ince-Gunduz BS, Alpern R, Amare D, Crawford J, Dolan B, Jones S, Kobylarz R, Reveley M, Cebe P (2010) Polymer 51:1485–1493CrossRefGoogle Scholar
  31. 31.
    Zhang GZ, Kitamura T, Yoshida H, Kawai T (2002) J Therm Anal Calorim 69:939–946CrossRefGoogle Scholar
  32. 32.
    Gregorio R (2006) J Appl Polym Sci 100:3272–3279CrossRefGoogle Scholar
  33. 33.
    Lee W-K, Ha C-S (1998) Polymer 39:7131–7134CrossRefGoogle Scholar
  34. 34.
    He L, Sun J, Wang X, Wang C, Song R, Hao Y (2013) Polym Int 62:638–646CrossRefGoogle Scholar
  35. 35.
    Avrami M (1940) J Chem Phys 8:212–224CrossRefGoogle Scholar
  36. 36.
    Avrami M (1939) J Chem Phys 7:1103–1112CrossRefGoogle Scholar
  37. 37.
    Avrami M (1941) J Chem Phys 9:177–184CrossRefGoogle Scholar
  38. 38.
    Liu Z, Maréchal P, Jérôme R (1997) Polymer 38:5149–5153CrossRefGoogle Scholar
  39. 39.
    Nandi AK (1994) Polymer 35:5202–5209CrossRefGoogle Scholar
  40. 40.
    Liu J, Qiu Z, Jungnickel BJ (2005) J Polym Sci B Polym Phys 43:287–295CrossRefGoogle Scholar
  41. 41.
    Silva MP, Sencadas V, Botelho G, Machado AV, Rolo AG, Rocha JG, Lanceros-Mendez S (2010) Mater Chem Phys 122:87–92CrossRefGoogle Scholar
  42. 42.
    Nakamura S, Sasaki T, Funamoto J, Matsuzaki K (1975) Makromol Chem 176:3471–3481CrossRefGoogle Scholar
  43. 43.
    Jeziorny A (1978) Polymer 19:1142–1144CrossRefGoogle Scholar
  44. 44.
    Ozawa T (1971) Polymer 12:150–158CrossRefGoogle Scholar
  45. 45.
    Liu T, Mo Z, Wang S, Zhang H (1997) Polym Eng Sci 37:568–575CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Cheng-Lu Liang
    • 1
  • Zhong-Hai Mai
    • 1
  • Qi Xie
    • 1
  • Rui-Ying Bao
    • 1
  • Wei Yang
    • 1
  • Bang-Hu Xie
    • 1
  • Ming-Bo Yang
    • 1
  1. 1.College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduChina

Personalised recommendations