Journal of Polymer Research

, 21:604 | Cite as

Solution behavior and associating structures of a salt-tolerant tetra-polymer containing an allyl-capped macromonomer

Original Paper


A novel salt-tolerant macromonomer, allyl-capped octylphenoxy poly(ethylene oxide) (AOP) with the degree of polymerization equal to 20, was synthesized, and then a novel acrylamide(AM)-based tetra-polymer (PSAA) containing sodium 2-acrylamido-2-methylpropane sulphonate (NaAMPS), AOP, and vinyl biphenyl (VP) was synthesized by aqueous free-radical copolymerization. Static light scattering measurement shows that the weight-average molecular weight of PSAA is only 6.75 × 106 g/mol, but the z-average radius of gyration in 30 g/L NaCl is up to 189 nm. The apparent viscosities of aqueous PSAA solutions are very low at all polymer concentrations. However, for PSAA in 70 g/L NaCl, the critical association concentration (C p *) decreases from 0.4 g/L in water to 0.3 g/L, and the apparent viscosity increases sharply with an increase in polymer concentration and is higher surprisingly than that in water above C p *. The influences of NaCl and CaCl2 concentrations on solution viscosities of PSAA were measured, and the brine solutions display the strong salt-thickening effect in a wide range of salt concentration. This is different from hydrophobically associating polymers reported in the literature. Moreover, the thickening mechanisms of PSAA in water and brine solutions were investigated by a fluorescent probe and atomic force microscope (AFM).


Acrylamide Macromonomer Static light scattering Atomic force microscope Viscosity 



We acknowledge the financial supports of the Specialized Research Fund for the Doctoral Program of Higher Education (contract grant number: 20135122110017) and Freedom Innovation Foundations of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (contract grant number: 2014–192).


  1. 1.
    Sheng JJ (2011) Modern Chemical Enhance oil recovery. Elsevier Ltd, New York, In Polymer Flooding, p. 101–206Google Scholar
  2. 2.
    Seright RS, Campbell AR, Mozley PS, Han P (2010) SPE J 15:341–348CrossRefGoogle Scholar
  3. 3.
    Rashid M, Blokhus AM, Skauge A (2010) J Appl Polym Sci 117:1551–1557Google Scholar
  4. 4.
    Rashid M, Blokhus AM, Skauge A (2011) J Appl Polym Sci 119:3623–3629CrossRefGoogle Scholar
  5. 5.
    Johnson KM, Fevola MJ, McCormick CL (2004) J Appl Polym Sci 92:647–657CrossRefGoogle Scholar
  6. 6.
    Ye L, Mao LJ, Huang RH (2001) J Appl Polym Sci 82:3552–3557CrossRefGoogle Scholar
  7. 7.
    Ye L, Luo KF, Huang RH (2000) Eur Polym J 36:1711–1715CrossRefGoogle Scholar
  8. 8.
    Ma J, Huang RH, Zhao L, Zhang X (2005) J Appl Polym Sci 97:316–321CrossRefGoogle Scholar
  9. 9.
    Ma JT, Cui P, Zhao L, Huang RH (2002) Eur Polym J 38:1627–1633CrossRefGoogle Scholar
  10. 10.
    Chen H, Ye ZB, Han LJ, Luo PY (2012) J Appl Polym Sci 123:2397–2405CrossRefGoogle Scholar
  11. 11.
    Wyatt NB, Gunther CM, Liberatore MW (2011) Polymer 52:2437–2444CrossRefGoogle Scholar
  12. 12.
    Tam KC, Tiu C (1990) Colloid Polym Sci 268:911–920CrossRefGoogle Scholar
  13. 13.
    Cai WS, Huang RH (2001) Eur Polym J 37:1553–1559CrossRefGoogle Scholar
  14. 14.
    Lei GL, Li LL, Nasr-El-Din HA (2011) SPE Reserv Eval Eng 14:120–128CrossRefGoogle Scholar
  15. 15.
    Wang WP, Tang JH, Peng XH, Hu ZD, Chen XG (2006) Sci China Ser B Chem 49:332–337CrossRefGoogle Scholar
  16. 16.
    Luo CX, Zhang LG, Hou JX, Guo MF, Qiao JL (2012) Acta Polymerica Sinica (3): 313–317Google Scholar
  17. 17.
    Stahl GA, Schulz DN (1988) Water-Soluble Polymers for Petroleum Recovery. Plenum Press, New yorkCrossRefGoogle Scholar
  18. 18.
    Biggs S, Hill A, Selb J, Caudau F (1992) J Phys Chem 96:1505CrossRefGoogle Scholar
  19. 19.
    Zhong CR, Huang RH, Zhang X, Dai H (2007) J Appl Polym Sci 103:4027–4038CrossRefGoogle Scholar
  20. 20.
    Glenn K, Van Bommel A, Bhattacharya SC, Palepu RM (2005) Colloid Polym Sci 283:845–853CrossRefGoogle Scholar
  21. 21.
    Dutta P, Dey J, Ghosh G, Nayak RR (2009) Polymer 50:1516–1525CrossRefGoogle Scholar
  22. 22.
    Chen J, Jiang M, Zhang YX, Zhou H (1999) Macromolecules 32:4861–4866CrossRefGoogle Scholar
  23. 23.
    Winnik FM (1993) Chem Rev 93:587–614CrossRefGoogle Scholar
  24. 24.
    Szajdzinska-pietek E, Pinteala M, Schlick S (2004) Polymer 45:4113–4120CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Sate Key Laboratory of Oil and Gas Reservoir Geology and ExploitationChengdu University of TechnologyChengduChina

Personalised recommendations