Journal of Polymer Research

, 21:585 | Cite as

Microwave absorbing properties of graphene nanosheets/ epoxy-cyanate ester resins composites

  • Fang Ren
  • Guangming Zhu
  • Yongkun Wang
  • Xiaoping Cui
Original Paper


Microwave absorbing composites with epoxy-cyanate ester (EP-CE) as matrix and graphene nanosheets (GNSs) as absorbers were prepared, and their electromagnetic and microwave absorbing properties were investigated in the frequency range of 2.6–12.4 GHz. The microstructures of the composites showed a uniform dispersion of the GNSs in the matrix. The complex permittivity of the composites increased with increasing filler content. As absorbing materials, the GNSs/EP-CE composites possess excellent absorption properties. And the composites with 3 wt.% of GNSs exhibited high values of reflection loss (>10 dB) over a wide frequency range 5.8–6.6 GHz and maximum loss is 15.7 dB at 5.8 GHz at a thickness of 3 mm. The minimum reflection loss was found to move toward to the low frequency region (from 10.2 to 4.5 GHz) with increasing composites thickness. Especially, a minimum reflection loss value of −21.4 dB was obtained at 4.5 GHz for the composite thickness of 4 mm. Moreover, the thermal properties of the composites were also investigated in detail. It is observed that GNSs reinforced EP-CE composites demonstrated better thermal stability than that of EP-CE matrix, which make them suitable for use in aerospace applications and radar absorbing material (RAM).


Graphene nanosheets Epoxy-cyanate ester Microwave absorbing properties Complex permittivity Reflection loss Thermal stability 



The authors are grateful to Dr. Yuchang Qing at State Key Laboratory of Solidification Processing for the complex permittivity measurements.


  1. 1.
    Vinoy KJ, Jha RM (1996) Radar absorbing materials: from theory to design and characterization[M]. Kluwer academic publishers, BostonCrossRefGoogle Scholar
  2. 2.
    Knott EF, Shaeffer J, Tuley M (2004) Radar cross section[M]. SciTech Publishing, RaleighGoogle Scholar
  3. 3.
    Wang W, Zang C, Jiao Q (2014) J Magn Magn Mater 349:116–120CrossRefGoogle Scholar
  4. 4.
    Raju K, Balaji CG, Venugopal Reddy P (2014) J Magn Magn Mater 354:383–387CrossRefGoogle Scholar
  5. 5.
    Zeng J, Xu J (2010) J Alloy Compd 49:L39–L41CrossRefGoogle Scholar
  6. 6.
    Liu G, Wang L, Chen G et al (2012) J Alloy Compd 514:183–188CrossRefGoogle Scholar
  7. 7.
    Qing YC, Zhou WC, Luo F et al (2010) Carbon 48:4074–4080CrossRefGoogle Scholar
  8. 8.
    Li S, Gan M, Ma L et al (2013) High Perform Polym 25:901–906CrossRefGoogle Scholar
  9. 9.
    Gelves GA, Al-Saleh MH, Sundararaj U (2011) J Mater Chem 21:829–836CrossRefGoogle Scholar
  10. 10.
    Liu PB, Huang Y (2014) J Polym Res 21:430CrossRefGoogle Scholar
  11. 11.
    Gupta TK, Singh BP, Teotia S, Katyal V, Dhakate SR, Mathur RB (2013) J Polym Res 20:169CrossRefGoogle Scholar
  12. 12.
    Kim BR, Lee HK, Kim E, Lee SH (2010) Synth Met 160:1838CrossRefGoogle Scholar
  13. 13.
    Li H, Wu SD, Wu JR, Huang GS (2014) J Polym Res 21:456CrossRefGoogle Scholar
  14. 14.
    Wang C, Han XJ, Xu P, Zhang XL, Du YC, Hu SR, Wang JY, Wang XH (2011) Appl Phys Lett 98:072906CrossRefGoogle Scholar
  15. 15.
    Lin SC, Pearce EM (1993) High-performance thermosets. Hanser Publishers, New YorkGoogle Scholar
  16. 16.
    Al-Ghamdi AA, Al-Hartomy OA, Al-Solamy F (2013) J Appl Polym Sci 127:2227CrossRefGoogle Scholar
  17. 17.
    Liang JJ, Wang Y, Huang Y et al (2009) Carbon 47:922–925CrossRefGoogle Scholar
  18. 18.
    Goertzen WK, Kessler MR (2008) Compos A: Appl Sci Manuf 39:761–768CrossRefGoogle Scholar
  19. 19.
    Hwang HJ, Li CH, Wang CS (2006) Polymer 47:1291–1299CrossRefGoogle Scholar
  20. 20.
    Lin CH (2004) Polymer 45:7911–7926CrossRefGoogle Scholar
  21. 21.
    Wang X, Hu Y, Song L et al (2011) J Mater Chem 21:4222–4227CrossRefGoogle Scholar
  22. 22.
    Cao Y, Feng J, Wu P (2010) Carbon 48:3834–3839CrossRefGoogle Scholar
  23. 23.
    McAllister MJ, Li JL, Adamson DH et al (2007) Chem Mater 19:4396–4404CrossRefGoogle Scholar
  24. 24.
    Lim SR, Chow WS (2011) Polym-Plast Technol Eng 50:182–189CrossRefGoogle Scholar
  25. 25.
    Sandler J, Shaffer MSP, Prasse T et al (1999) Polymer 40:5967–5971CrossRefGoogle Scholar
  26. 26.
    Liu L, Grunlan JC (2007) Adv Funct Mater 17:2343–2348CrossRefGoogle Scholar
  27. 27.
    Lee SE, Kang JH, Kim CG (2006) Compos Struct 76:397–405CrossRefGoogle Scholar
  28. 28.
    Pillalamarri SK, Blum FD, Tokuhiro AT et al (2005) Chem Mater 17:5941–5944CrossRefGoogle Scholar
  29. 29.
    Singh VK, Shukla A, Patra MK et al (2012) Carbon 50:2202–2208CrossRefGoogle Scholar
  30. 30.
    Tamás S, Ottó B, Péter F, Katalin J, Yiannis S, Dimitris P et al (2006) Chem Mater 18:2740–2749CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Fang Ren
    • 1
  • Guangming Zhu
    • 1
  • Yongkun Wang
    • 1
  • Xiaoping Cui
    • 1
  1. 1.Department of Applied ChemistryNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations