Skip to main content
Log in

Microwave absorbing properties of graphene nanosheets/ epoxy-cyanate ester resins composites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Microwave absorbing composites with epoxy-cyanate ester (EP-CE) as matrix and graphene nanosheets (GNSs) as absorbers were prepared, and their electromagnetic and microwave absorbing properties were investigated in the frequency range of 2.6–12.4 GHz. The microstructures of the composites showed a uniform dispersion of the GNSs in the matrix. The complex permittivity of the composites increased with increasing filler content. As absorbing materials, the GNSs/EP-CE composites possess excellent absorption properties. And the composites with 3 wt.% of GNSs exhibited high values of reflection loss (>10 dB) over a wide frequency range 5.8–6.6 GHz and maximum loss is 15.7 dB at 5.8 GHz at a thickness of 3 mm. The minimum reflection loss was found to move toward to the low frequency region (from 10.2 to 4.5 GHz) with increasing composites thickness. Especially, a minimum reflection loss value of −21.4 dB was obtained at 4.5 GHz for the composite thickness of 4 mm. Moreover, the thermal properties of the composites were also investigated in detail. It is observed that GNSs reinforced EP-CE composites demonstrated better thermal stability than that of EP-CE matrix, which make them suitable for use in aerospace applications and radar absorbing material (RAM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vinoy KJ, Jha RM (1996) Radar absorbing materials: from theory to design and characterization[M]. Kluwer academic publishers, Boston

    Book  Google Scholar 

  2. Knott EF, Shaeffer J, Tuley M (2004) Radar cross section[M]. SciTech Publishing, Raleigh

    Google Scholar 

  3. Wang W, Zang C, Jiao Q (2014) J Magn Magn Mater 349:116–120

    Article  CAS  Google Scholar 

  4. Raju K, Balaji CG, Venugopal Reddy P (2014) J Magn Magn Mater 354:383–387

    Article  CAS  Google Scholar 

  5. Zeng J, Xu J (2010) J Alloy Compd 49:L39–L41

    Article  Google Scholar 

  6. Liu G, Wang L, Chen G et al (2012) J Alloy Compd 514:183–188

    Article  CAS  Google Scholar 

  7. Qing YC, Zhou WC, Luo F et al (2010) Carbon 48:4074–4080

    Article  CAS  Google Scholar 

  8. Li S, Gan M, Ma L et al (2013) High Perform Polym 25:901–906

    Article  Google Scholar 

  9. Gelves GA, Al-Saleh MH, Sundararaj U (2011) J Mater Chem 21:829–836

    Article  CAS  Google Scholar 

  10. Liu PB, Huang Y (2014) J Polym Res 21:430

    Article  Google Scholar 

  11. Gupta TK, Singh BP, Teotia S, Katyal V, Dhakate SR, Mathur RB (2013) J Polym Res 20:169

    Article  Google Scholar 

  12. Kim BR, Lee HK, Kim E, Lee SH (2010) Synth Met 160:1838

    Article  CAS  Google Scholar 

  13. Li H, Wu SD, Wu JR, Huang GS (2014) J Polym Res 21:456

    Article  Google Scholar 

  14. Wang C, Han XJ, Xu P, Zhang XL, Du YC, Hu SR, Wang JY, Wang XH (2011) Appl Phys Lett 98:072906

    Article  Google Scholar 

  15. Lin SC, Pearce EM (1993) High-performance thermosets. Hanser Publishers, New York

    Google Scholar 

  16. Al-Ghamdi AA, Al-Hartomy OA, Al-Solamy F (2013) J Appl Polym Sci 127:2227

    Article  CAS  Google Scholar 

  17. Liang JJ, Wang Y, Huang Y et al (2009) Carbon 47:922–925

    Article  CAS  Google Scholar 

  18. Goertzen WK, Kessler MR (2008) Compos A: Appl Sci Manuf 39:761–768

    Article  Google Scholar 

  19. Hwang HJ, Li CH, Wang CS (2006) Polymer 47:1291–1299

    Article  CAS  Google Scholar 

  20. Lin CH (2004) Polymer 45:7911–7926

    Article  CAS  Google Scholar 

  21. Wang X, Hu Y, Song L et al (2011) J Mater Chem 21:4222–4227

    Article  CAS  Google Scholar 

  22. Cao Y, Feng J, Wu P (2010) Carbon 48:3834–3839

    Article  Google Scholar 

  23. McAllister MJ, Li JL, Adamson DH et al (2007) Chem Mater 19:4396–4404

    Article  CAS  Google Scholar 

  24. Lim SR, Chow WS (2011) Polym-Plast Technol Eng 50:182–189

    Article  CAS  Google Scholar 

  25. Sandler J, Shaffer MSP, Prasse T et al (1999) Polymer 40:5967–5971

    Article  CAS  Google Scholar 

  26. Liu L, Grunlan JC (2007) Adv Funct Mater 17:2343–2348

    Article  CAS  Google Scholar 

  27. Lee SE, Kang JH, Kim CG (2006) Compos Struct 76:397–405

    Article  Google Scholar 

  28. Pillalamarri SK, Blum FD, Tokuhiro AT et al (2005) Chem Mater 17:5941–5944

    Article  CAS  Google Scholar 

  29. Singh VK, Shukla A, Patra MK et al (2012) Carbon 50:2202–2208

    Article  CAS  Google Scholar 

  30. Tamás S, Ottó B, Péter F, Katalin J, Yiannis S, Dimitris P et al (2006) Chem Mater 18:2740–2749

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Yuchang Qing at State Key Laboratory of Solidification Processing for the complex permittivity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, F., Zhu, G., Wang, Y. et al. Microwave absorbing properties of graphene nanosheets/ epoxy-cyanate ester resins composites. J Polym Res 21, 585 (2014). https://doi.org/10.1007/s10965-014-0585-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0585-2

Keywords

Navigation