Advertisement

Journal of Polymer Research

, 21:556 | Cite as

Rheological properties, morphology, mechanical properties, electrical resistivity and EMI SE of cyclic butylene terephthalate/graphite/carbon black composites

  • Jianbin Song
  • Wenbiao Zhang
  • Wenbin Yang
  • Jianfeng Xu
  • Jiajia Lai
Original Paper

Abstract

According to traits of cyclic butylene terephthalate (CBT) oligomer polymerizing into poly(butylene terephthalate) (PBT), the composites with high electromagnetic interference shielding effectiveness (EMI SE) were obtained based on CBT oligomer, graphite (GR) and carbon black (CB). The effects of GR and CB on rheological properties, morphology, mechanical properties, and electrical resistivity and EMI SE of PBT composites have been investigated using rheological rheometer, scanning electron microscope (SEM), material mechanical testing machine and electromagnetic shielding measuring instrument, respectively. The synergistic action of GR and CB was observed, which made PBT/GR/CB composites exhibit good mechanical properties, low electrical resistivity, and high vicat softening temperature (VST). Also, the incorporation of CB into PBT/GR composites improved largely EMI SE of composites, and the optimal EMI SE was determined to be ~ 60 dB over the frequency range of 30–3,000 MHz.

Keywords

CBT Graphite Carbon black EMI SE 

Notes

Acknowledgments

The authors are very thankful for the support from the Natural Science Foundation of Fujian Province (2014J01068); Department of Education of Fujian Province Foundation (JK2013012); the National Natural Science Foundation of China (No. 31170535 and 30771683); the Youth Foundation of Fujian Agriculture and Forestry University (No. 2012XJJ05).

References

  1. 1.
    Villacorta BS, Ogale AA, Hubing TH (2013) Effect of heat treatment of carbon nanofibers on the electromagnetic shielding effectiveness of linear low density polyethylene nanocomposites. Polym Eng Sci 53:417–423CrossRefGoogle Scholar
  2. 2.
    Madani M (2010) Conducting carbon black filled NR/IIR blend vulcanizates: assessment of the dependence of physical and mechanical properties and electromagnetic interference shielding on variation of filler loading. J Polym Res 17:53–62CrossRefGoogle Scholar
  3. 3.
    Ting TH, Wu KH (2013) Synthesis and electromagnetic wave-absorbing properties of BaTiO3/polyaniline structured composites in 2–40 GHz. J Polym Res 20:127CrossRefGoogle Scholar
  4. 4.
    Gupta TK, Singh BP, Teotia S, Katyal V, Dhakate SR, Mathur RB (2013) Designing of multiwalled carbon nanotubes reinforced polyurethane composites as electromagnetic interference shielding materials. J Polym Res 20:169CrossRefGoogle Scholar
  5. 5.
    Xue B, Feng T, Zhou ST, Bao J (2014) High electrical conductive polymethylmethacrylate/graphite composites obtained via a novel pickering emulsion route. J Polym Res 21:373CrossRefGoogle Scholar
  6. 6.
    Gao JF, Yan DX, Huang HD, Zeng XB, Zhang WQ, Li ZM (2011) Tunable positive liquid coefficient of an anisotropically conductive carbon nanotube-polymer composite. J Polym Res 18:2239–2243CrossRefGoogle Scholar
  7. 7.
    King JA, Via MD, Morrison FA, Wiese KR, Beach EA, Cieslinski MJ, Bogucki GR (2012) Characterization of exfoliated graphite nanoplatelets/polycar bonate composites: electrical and thermal conductivity, and tensile, flexural, and rheological properties. J Compos Mater 46(9):1029–1039CrossRefGoogle Scholar
  8. 8.
    Huang CL, Wang C (2011) Rheological and conductive percolation laws for syndiotactic polystyrene composites filled with carbon nanocapsules and carbon nanotubes. Carbon 49:2334–2440CrossRefGoogle Scholar
  9. 9.
    Zhang LY, Wang LB, See KY, Ma J (2013) Effect of carbon nanofiber reinforcement on electromagnetic interference shielding effectiveness of syntactic foam. J Mater Sci 48:7757–7763CrossRefGoogle Scholar
  10. 10.
    Ameli A, Jung PU, Park CB (2013) Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon 60:379–391CrossRefGoogle Scholar
  11. 11.
    Samsudin SA, Kukureka SN, Jenkins MJ (2012) Miscibility in cyclic poly(butylene terephthalate) and styrene maleimide blends prepared by solid-dispersion and in situ polymerization of cyclic butylene terephthalate oligomers within styrene maleimide. J Appl Polym Sci 126:E290–E297CrossRefGoogle Scholar
  12. 12.
    Harsch M, Karger-Kocsis J, Apostolov AA (2008) Crystallization-induced shrinkage, crystalline, and thermomechanical properties of in situ polymerized cyclic butylene terephthalate. J Appl Polym Sci 108:1455–1461CrossRefGoogle Scholar
  13. 13.
    Song JB, Mighri F, Ajji A, Lu CH (2012) Polyvinylidene fluoride/poly(ethylene terephthalate) conductive composites for proton exchange membrane fuel cell bipolar plates: crystallization, structure, and through-plane electrical resistivity. Polym Eng Sci 52:2552–2558CrossRefGoogle Scholar
  14. 14.
    Song JB, Zhong YM, Lin SY, Lan LS, Yang WB (2014) The study of volume electrical resistivity and mechanical property of double continuous phase PVDF/CBT composite containing carbon black and graphite. Adv Mater Res 838–841:107–110Google Scholar
  15. 15.
    Wu CM, Jiang CW (2010) Crystallization and morphology of polymerized cyclic butylene terephthalate. J Polym Sci Polym Phys 48:1127–1134CrossRefGoogle Scholar
  16. 16.
    Abt T, Sánchez-Soto M, Larduya AM (2012) Toughening of in situ polymerized cyclic butylene terephthalate by chain extension with a bifunctional epoxy resin. Eur Polym J 481:63–171Google Scholar
  17. 17.
    Song JB, Yang WB, Fu F, Zhang Y (2014) the effect of graphite on the water uptake, mechanical properties, morphology and EMI SE of HDPE/bamboo flour composites. BioRes 9(3):3955–3967CrossRefGoogle Scholar
  18. 18.
    Feng MN, Huang X, Tang HL, Liu XB (2014) Effects of surface modification on interfacial and rheological properties of CCTO/PEN composite films. Colloids Surf A441:556–564CrossRefGoogle Scholar
  19. 19.
    Reena VL, Sudha JD, Ramakrishnan R (2013) Development of electromagnetic interference shielding materials from the composite of nanostructured polyaniline-polyhydroxy iron-clay and polycarbonate. J Appl Polym Sci 128:1756–1763Google Scholar
  20. 20.
    Balamurugan GP, Maiti SN (2010) Effects of nanotalc inclusion on mechanical, microstructural, melt shear rheological, and crystallization behavior of polyamide 6-based binary and ternary nanocomposites. Polym Eng Sci 50:1978–1993CrossRefGoogle Scholar
  21. 21.
    Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):9048–9055CrossRefGoogle Scholar
  22. 22.
    Li ML, Jeong YG (2012) Influences of exfoliated graphite on structures, thermal stability, mechanical modulus, and electrical resistivity of poly(butylene terephthalate). J Appl Polym Sci 125:E532–E540CrossRefGoogle Scholar
  23. 23.
    Pang H, Piao YY, Cui CH, Bao Y, Lei J, Yuan GP, Zhang CL (2013) Preparation and performance of segregated polymer composites with hybrid fillers of octadecylamine functionalized graphene and carbon nanotubes. J Polym Res 20:304CrossRefGoogle Scholar
  24. 24.
    Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate−mwcnt−graphite nanoplate networking. Appl Mater Interfaces 5:4712–4724CrossRefGoogle Scholar
  25. 25.
    Wu XL, Qiu JH, Liu P, Sakai E (2013) Preparation and characterization of polyamide composites with modified graphite powders. J Polym Res 20:284CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jianbin Song
    • 1
  • Wenbiao Zhang
    • 2
  • Wenbin Yang
    • 1
  • Jianfeng Xu
    • 1
  • Jiajia Lai
    • 1
  1. 1.College of Materials EngineeringFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.School of EngineeringZhe Jiang A&F UniversityHangzhouChina

Personalised recommendations