New biosourced alternated poly(ether)Ester-Amides (PeEA): synthesis and combined NMR/MALDI ToF MS characterization

  • Raouf Medimagh
  • Asma Saadaoui
  • Salma Mghirbi
  • Sylvain Marque
  • Damien Prim
  • Aurélie Fildier
  • Audrey Bulete
  • Guy Raffin
  • Saber Chatti
Original Paper


New biosourced alternated poly(ether)Ester-Amides PeEA were prepared by polycondensation in solution or in bulk of unprecedented aminoalcohols based on 1,4:3,6-dianhydrohexitols (DAH) with aromatic and aliphatic diacyl chlorides (sebacoyl, terephtaloyl and isophtaloyl). Optimization of the polymerization in solution has been investigated using MALDI ToF MS and NMR spectroscopy to ascertain the structures and end chain nature of the resulting polymers. The influence of the DAH stereochemistry and the polymerization mode on the structures and thermal properties was demonstrated by MALDI ToF and complementary analytical techniques (DSC and SEC). Isomannide based polymers revealed amorphous but showed higher Tg (around 80 °C for sebacoyl and 180 °C for isophtaloyl) whereas the isosorbide based polymers were semi crystalline. Best properties were obtained in bulk using isomannide based aminoalcohol and sebacoyl chloride (Tg of 82 °C and Mw of 32 kDa, PDI = 1.41).


1,4-3,6-dianhydrohexitols Alternated poly(ether)Ester-Amides Biobased MALDI ToF mass spectrometry Polycondensation 



Authors are grateful to Société Roquette Lestrem for a kind gift of Isosorbide and Isomannide. The authors want to thank the Tunisian Ministry of Higher Education and Research and the French Foreign affairs Ministry for Financial support (Project “PHC Utique” 13G/1211). Authors want to thanks all INRAP staff especially (Mr Chaouki Belgacem and Mohamed Mezni, Mrs Saloua Ben Aissa and Monia Elouni) for analysis and helpful discussions.


  1. 1.
    Kricheldorf HR (1997) “Sugar Diols” as building blocks of polycondensates. J Macromol Sci C 37(4):599–631. doi: 10.1080/15321799708009650 CrossRefGoogle Scholar
  2. 2.
    Wu J, Eduard P, Jasinska-Walc L, Rozanski A, Noordover BAJ, van Es DS, Koning CE (2013) Fully isohexide-based polyesters: synthesis, characterization, and structure-properties relations. Macromolecules 46(2):384–394. doi: 10.1021/Ma302209f CrossRefGoogle Scholar
  3. 3.
    Stoss P, Hemmer R (1991) 1,4:3,6-Dianhydrohexitols. In: Derek H (ed) Advances in Carbohydrate Chemistry and Biochemistry, volume 49. Academic Press, pp 93–173. doi: 10.1016/S0065-2318(08)60182-1
  4. 4.
    Wu J, Eduard P, Thiyagarajan S, van Haveren J, van Es DS, Koning CE, Lutz M, Fonseca Guerra C (2011) Isohexide derivatives from renewable resources as chiral building blocks. Chem Sus Chem 4(5):599–603. doi: 10.1002/cssc.201100076 CrossRefGoogle Scholar
  5. 5.
    Medimagh R, Mghirbi S, Saadaoui A, Fildier A, Desloir-Bonjour M, Raffin G, Kricheldorf HR, Chatti S (2013) Synthesis of biosourced polyether-amides from 1,4-3,6-dianhydrohexitols: characterization by NMR and MALDI–ToF mass spectrometry. C R Chim 16(12):1127–1139. doi: 10.1016/j.crci.2013.05.004 CrossRefGoogle Scholar
  6. 6.
    Caouthar A, Roger P, Tessier M, Chatti S, Blais JC, Bortolussi M (2007) Synthesis and characterization of new polyamides derived from di(4-cyanophenyl)isosorbide. Eur Polym J 43(1):220–230. doi: 10.1016/j.eurpolymj.2006.08.012 CrossRefGoogle Scholar
  7. 7.
    Caouthar AA, Loupy A, Bortolussi M, Blais J-c, Dubreucq L, Meddour A (2005) Synthesis and characterization of new polyamides based on diphenylaminoisosorbide. J Polym Sci A Polym Chem 43(24):2480–2491. doi: 10.1002/pola.21116 CrossRefGoogle Scholar
  8. 8.
    Sablong R, Duchateau R, Koning CE, de Wit G, va Es D, Koelewijn R, van Haveren J (2008) Incorporation of isosorbide into poly(butylene terephthalate) via solid-state polymerization. Biomacromolecules 9(11):3090–3097. doi: 10.1021/bm800627d CrossRefGoogle Scholar
  9. 9.
    Garaleh M, Yashiro T, Kricheldorf HR, Simon P, Chatti S (2010) (Co-)polyesters derived from isosorbide and 1,4-cyclohexane dicarboxylic acid and succinic acid. Macromol Chem Phys 211(11):1206–1214. doi: 10.1002/macp.200900656 CrossRefGoogle Scholar
  10. 10.
    Gopalakrishnan P, Narayan-Sarathy S, Ghosh T, Mahajan K, Belgacem M (2013) Synthesis and characterization of bio-based furanic polyesters. J Polym Res 21(1):1–9. doi: 10.1007/s10965-013-0340-0 Google Scholar
  11. 11.
    Beldi M, Medimagh R, Chatti S, Marque S, Prim D, Loupy A, Delolme F (2007) Characterization of cyclic and non-cyclic poly-(ether-urethane)s bio-based sugar diols by a combination of MALDI-TOF and NMR. Eur Polym J 43(8):3415–3433. doi: 10.1016/j.eurpolymj.2007.06.003 CrossRefGoogle Scholar
  12. 12.
    Elizabeth C, Sreekumar K (2012) Theoretical and experimental studies of chiral polyurethanes. J Polym Res 19(3):1–10. doi: 10.1007/s10965-011-9760-x CrossRefGoogle Scholar
  13. 13.
    Bennour H, Medimagh R, Fildier A, Raffin G, Hangouet M, Chatti S, Kricheldorf HR (2014) Hyperbranched cyclic and multicyclic poly(etherketone)s by polycondensation of isosorbide and isomannide with 2,6,4′-trifluorobenzophenone and 1,3,5-tris(4-fluorobenzoyl) benzene. High Perform Polym 26(2):144–155. doi: 10.1177/0954008313501912 CrossRefGoogle Scholar
  14. 14.
    Abderrazak HB, Fildier A, Romdhane HB, Chatti S, Kricheldorf HR (2013) Synthesis of new poly(ether ketone)s derived from biobased diols. Macromol Chem Phys 214(13):1423–1433. doi: 10.1002/macp.201300015 CrossRefGoogle Scholar
  15. 15.
    Fenouillot F, Rousseau A, Colomines G, Saint-Loup R, Pascault JP (2010) Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): a review. Prog Polym Sci 35(5):578–622. doi: 10.1016/j.progpolymsci.2009.10.001 CrossRefGoogle Scholar
  16. 16.
    Beghdadi S, Abdelhedi Miladi I, Ben Romdhane H, Bernard J, Drockenmuller E (2012) RAFT polymerization of bio-based 1-vinyl-4-dianhydrohexitol-1,2,3-triazole stereoisomers obtained via click chemistry. Biomacromolecules 13(12):4138–4145. doi: 10.1021/bm301435e Google Scholar
  17. 17.
    Rusu G, Rusu E (2013) Evaluation of thermal and mechanical behavior of some anionic polyesteramide copolymers. J Polym Res 20(11):1–13. doi: 10.1007/s10965-013-0308-0 CrossRefGoogle Scholar
  18. 18.
    Li X, Essawy HA, Pizzi A, Delmotte L, Rode K, Nouen D, Fierro V, Celzard A (2012) Modification of tannin based rigid foams using oligomers of a hyperbranched poly(amine-ester). J Polym Res 19(12):1–9. doi: 10.1007/s10965-012-0021-4 CrossRefGoogle Scholar
  19. 19.
    Liu C, Jia W, Qian Z, Huang M, Gu Y, Chao G, Gou M, Gong C, Deng H, Lei K, Huang A, Tu M (2007) In vitro degradation behavior of polyesteramide copolymer fiber based on 6-aminocaproic acid, adipic acid, and 1,6-hexane diol. J Polym Res 14(1):31–37. doi: 10.1007/s10965-006-9077-3 CrossRefGoogle Scholar
  20. 20.
    Goodman I, Sheahan RJ (1990) Copolyesteramides—V. Hexamethylene adipamide/hexamethylene adipate random and ordered copolymers: preparation and general properties. Eur Polym J 26(10):1081–1088. doi: 10.1016/0014-3057(90)90007-Q CrossRefGoogle Scholar
  21. 21.
    Katsarava R, Beridze V, Arabuli N, Kharadze D, Chu CC, Won CY (1999) Amino acid-based bioanalogous polymers. Synthesis, and study of regular poly(ester amide)s based on bis(α-amino acid) α, ω-alkylene diesters, and aliphatic dicarboxylic acids. J Polym Sci A Polym Chem 37(4):391–407. doi: 10.1002/(sici)1099-0518(19990215)37:4<391::aid-pola3>;2-e CrossRefGoogle Scholar
  22. 22.
    Chevallier P, Soutif J-C, Brosse J-C, Grote M (1999) Synthesis of poly(amide-ester)s from 2,6-pyridine dicarboxylic acid and ethanolamine derivatives—investigation of the polymer sorption behaviour towards heavy metal ions. React Funct Polym 42(2):129–146. doi: 10.1016/S1381-5148(98)00088-1 CrossRefGoogle Scholar
  23. 23.
    Vera M, Almontassir A, Rodríguez-Galán A, Puiggalí J (2003) Synthesis and characterization of a new degradable poly(ester amide) derived from 6-amino-1-hexanol and glutaric acid. Macromolecules 36(26):9784–9796. doi: 10.1021/ma0345652 CrossRefGoogle Scholar
  24. 24.
    Triki R, Abid M, Tessier M, Abid S, El Gharbi R, Fradet A (2013) Furan-based poly(esteramide)s by bulk copolycondensation. Eur Polym J 49(7):1852–1860. doi: 10.1016/j.eurpolymj.2013.04.014 CrossRefGoogle Scholar
  25. 25.
    Rodriguez-Galan A, Franco L, Puiggali J (2011) Degradable poly(ester amide)s for biomedical applications. Polymers 3(1):65–99. doi: 10.3390/Polym3010065 CrossRefGoogle Scholar
  26. 26.
    Gomurashvili Z, Kricheldorf HR, Katsarava R (2000) Amino acid based bioanalogous polymers. Synthesis and study of new poly(ester amide)s composed of hydrophobic α-amino acids and dianhydrohexitoles. J Macromol Sci Pure Appl Chem 37A(3):215–227CrossRefGoogle Scholar
  27. 27.
    Okada M, Yamada M, Yokoe M, Aoi K (2001) Biodegradable polymers based on renewable resources. V. Synthesis and biodegradation behavior of poly(ester amide)s composed of 1,4:3,6-dianhydro-D-glucitol, α-amino acid, and aliphatic dicarboxylic acid units. J Appl Polym Sci 81(11):2721–2734. doi: 10.1002/app.1718 CrossRefGoogle Scholar
  28. 28.
    Abenhaïm D, Loupy A, Munnier L, Tamion R, Marsais F, Quéguiner G (1994) Selective alkylations of 1,4:3,6-dianhydro-d-glucitol (isosorbide). Carbohydr Res 261(2):255–266. doi: 10.1016/0008-6215(94)84022-9 CrossRefGoogle Scholar
  29. 29.
    Tamion R, Marsais F, Ribereau P, Queguiner G, Abenhaim D, Loupy A, Munnier L (1993) Synthesis of new chiral auxiliaries derived from isosorbide. Tetrahedron Asymmetry 4(8):1879–1890. doi: 10.1016/S0957-4166(00)80428-0 CrossRefGoogle Scholar
  30. 30.
    Kricheldorf HR, Rabenstein M, Maskos M, Schmidt M (2001) Macrocycles. 15. The role of cyclization in kinetically controlled polycondensations. 1. Polyester syntheses. Macromolecules 34(4):713–722. doi: 10.1021/Ma001099x CrossRefGoogle Scholar
  31. 31.
    Noordover BAJ, van Staalduinen VG, Duchateau R, Koning CE, van Benthem, Mak M, Heise A, Frissen AE, van Haveren J, van Benthem A, Mak M, Heise A, Frissen AE, van Haveren J (2006) Co- and terpolyesters based on isosorbide and succinic acid for coating applications: synthesis and characterization. Biomacromolecules 7(12):3406–3416. doi: 10.1021/bm060713v CrossRefGoogle Scholar
  32. 32.
    Kricheldorf HR, Weidner SM (2013) High Tg copolyesters of lactide, isosorbide and isophthalic acid. Eur Polym J 49(8):2293–2302. doi: 10.1016/j.eurpolymj.2013.05.007 CrossRefGoogle Scholar
  33. 33.
    Armelin E, Paracuellos N, Rodrı́guez-Galán A, Puiggalı́ J (2001) Study on the degradability of poly(ester amide)s derived from the α-amino acids glycine, and l-alanine containing a variable amide/ester ratio. Polymer 42(19):7923–7932. doi: 10.1016/S0032-3861(01)00315-9 CrossRefGoogle Scholar
  34. 34.
    Zhao Y, Vaughan AS, Sutton SJ, Swingler SG (2001) On the crystallization, morphology and physical properties of a clarified propylene/ethylene copolymer. Polymer 42(15):6587–6597. doi: 10.1016/S0032-3861(01)00031-3 CrossRefGoogle Scholar
  35. 35.
    Garg P, Keul H, Klee D, Möller M (2009) Thermal properties of poly(ester amide)s with isolated, two adjacent and three adjacent amide groups within a polyester chain. Macromol Chem Phys 210(20):1754–1765. doi: 10.1002/macp.200900232 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Raouf Medimagh
    • 1
  • Asma Saadaoui
    • 1
    • 2
  • Salma Mghirbi
    • 1
  • Sylvain Marque
    • 2
  • Damien Prim
    • 2
  • Aurélie Fildier
    • 3
  • Audrey Bulete
    • 3
  • Guy Raffin
    • 3
  • Saber Chatti
    • 3
  1. 1.Laboratoire des Substances Naturelles (LSN), LR10 INRAP 02Institut National de Recherche et d’Analyse Physico-chimique INRAPArianaTunisia
  2. 2.Université de Versailles-St-Quentin (UVSQ)Institut Lavoisier de Versailles (ILV) UMR CNRS 8180Versailles CedexFrance
  3. 3.Université de Lyon, UMR 5280Institut des Sciences Analytiques (ISA)VilleurbanneFrance

Personalised recommendations