Preparation, characterization and application of a chiral thermo-sensitive membrane for phenylalanine separation of the racemic mixture

  • Xia Feng
  • Qiang Zhang
  • Xiaotong Liang
  • Jinling Li
  • Yiping Zhao
  • Li Chen
Original Paper


Poly(vinylidene fluoride)-grafting-poly(N-isopropylacrylamide) (PVDF-g-PNIPA), a thermo-sensitive polymer with a poly(vinylidene fluoride) (PVDF) backbone and poly(N-isopropylacrylamide) (PNIPA) side chains, was synthesized via radical copolymerization. Chiral micro-gels were synthesized with N-isopropylacrylamide (NIPA) and a chiral monomer that was obtained by an acrylation reaction with L-phenylalanine and acrylyl chloride. A novel chiral thermo-sensitive membrane for phenylalanine separation of the racemic mixture was prepared by a phase inversion method with a blend of chiral micro-gels and PVDF-g-PNIPA. Chemical composition and morphology of the membrane were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. The permeability, enantioselectivity, the resolution mechanism, the effects of temperature, blending ratio and type of enantiomer molecules on the chiral recognition properties were studied. The results showed the water flux of the membrane displayed a sensitivity to temperature and the permeability of D-phenylalanine was better than that of L-phenylalanine. Comparing with a chiral membrane at 40 °C the membrane at 25 °C obtained a larger percentage of enantiomeric excess (e.e.%). The values of e.e.% and the separation factor (α) at a temperature above the LCST were also much higher than that of membranes with no thermo-sensitivity at low temperature. The value of e.e.% and α increased with an increased blending ratio; when the blending ratio was 30 wt.% in the chiral blended membrane the value of e.e.% reached 10 %. The model of the chiral membrane could be described as a solution-diffusion model.


Chiral resolution Phenylalanine Micro-gels Membrane Poly (N-isopropyl acrylamide) 



This work was financially supported by the National Natural Science Foundation of China (Contract grant number: 21074091, 21174103, and 31200719), the Specialized Research Fund for the Doctoral Program of Higher Education (Contract grant number: 20121201110003 and 20121201120005) and the Program for Changjiang Scholars and Innovative Research Team in the University of Ministry of Education of China (Contract grant number: IRT13084).


  1. 1.
    Wang P, Jiang SR, Liu DH, Wang P, Zhou ZQ (2005) J Biochem Biophys Methods 62:219–230CrossRefGoogle Scholar
  2. 2.
    Sueyoshi Y, Fukushima C, Yoshikawa M (2010) J Membr Sci 357:90–97CrossRefGoogle Scholar
  3. 3.
    Bozkurt S, Yilmaz M, Sirit A (2012) Chirality 24:129–136CrossRefGoogle Scholar
  4. 4.
    Ha JJ, Choi HJ, Jin JS, Jeong ED, Hyun MH (2010) J Chromatogr A 1217:6436–6441CrossRefGoogle Scholar
  5. 5.
    Yu XW, Xu Y, Gu H (2010) J Biotechnol 150:S345CrossRefGoogle Scholar
  6. 6.
    Wang WF, Xiong WW, Zhao M, Sun WZ, Li FR, Yuan LM (2009) Tetrahedron Asymmetry 20:1052–1056CrossRefGoogle Scholar
  7. 7.
    Wang YJ, Hu Y, Xu H, Luo GS, Dai YY (2007) J Membr Sci 293:133–141CrossRefGoogle Scholar
  8. 8.
    Zhang DY, Zhang TZ, Deng JP, Yang WT (2010) React Funct Polym 70:376–381CrossRefGoogle Scholar
  9. 9.
    Pellissier H (2012) Adv Synth Catal 354:237–294CrossRefGoogle Scholar
  10. 10.
    Trung TQ, Kim JM, Kim KH (2006) Arch Pharm Res 29:108–111CrossRefGoogle Scholar
  11. 11.
    Yagishita F, Ishikawa H, Onuki T, Hachiya S, Mino T, Sakamoto M (2012) Angew Chem Int Ed 51:13023–13025CrossRefGoogle Scholar
  12. 12.
    Lumbroso A, Cooke ML, Breit B (2013) Angew Chem Int Ed 52:1890–1932CrossRefGoogle Scholar
  13. 13.
    Agustian J, Kamaruddin AH, Bhatia SJ (2011) Chem Technol Biotechnol 86:1032–1048CrossRefGoogle Scholar
  14. 14.
    Bhushan R, Dixit S (2012) Biomed Chromatogr 26:962–971Google Scholar
  15. 15.
    Han S, Stephen M (2011) J Membr Sci 367:1–6CrossRefGoogle Scholar
  16. 16.
    Durmaz M, Bozkurt S, Naziroglu HN, Yilmaz M, Sirit A (2011) Tetrahedron Asymmetry 22:791–796CrossRefGoogle Scholar
  17. 17.
    Palet C, Gumi T, Minguillon C (2005) Polymer 46:12306–12312CrossRefGoogle Scholar
  18. 18.
    Itou Y, Nakano M, Yoshikawa M (2008) J Membr Sci 325:371–375CrossRefGoogle Scholar
  19. 19.
    Wang HD, Xie R, Niu CH, Song H, Yang M, Liu SA, Chu LY (2009) Chem Eng Sci 64:1462–1473CrossRefGoogle Scholar
  20. 20.
    Matsuoka Y, Kanda N, Lee YM, Higuchi A (2009) J Membr Sci 280:116–123CrossRefGoogle Scholar
  21. 21.
    Xiao YC, Lim HM, Chung TS, Rajagopalan R (2007) Langmuir 23:12990–12996CrossRefGoogle Scholar
  22. 22.
    Hatanaka M, Nishioka Y, Yoshikawa M (2011) Macromol Chem Phys 212:1351–1359CrossRefGoogle Scholar
  23. 23.
    Meng J, Guo W, Huang XB, Dong Y, Cheng YX, Zhu CJ (2011) Polymer 52:363–367CrossRefGoogle Scholar
  24. 24.
    Xie R, Chu LY, Deng JG (2008) Chem Soc Rev 37:1243–1263CrossRefGoogle Scholar
  25. 25.
    Guo YF, Feng X, Chen L, Zhao YP, Bai JN (2010) J Appl Polym Sci 116:1005–1009Google Scholar
  26. 26.
    Xie R, Zhang SB, Wang HD, Yang M, Li PF, Zhu XL, Chu LY (2009) J Membr Sci 326:618–626CrossRefGoogle Scholar
  27. 27.
    Xiong WW, Wang WF, Zhao L, Song Q, Yuan LM (2009) J Membr Sci 328:268–272CrossRefGoogle Scholar
  28. 28.
    Xie SM, Wang WF, Ai P, Yang M, Yuan LM (2008) J Membr Sci 321:293–298CrossRefGoogle Scholar
  29. 29.
    Ma CO, Xu XL, Ai P, Xie SM, Lv YC, Shan HQ, Yuan LM (2011) Chirality 23:379–382CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and EngineeringTianjin Polytechnic UniversityTianjinChina

Personalised recommendations