Photoinduced ICAR ATRP of Methyl Methacrylate with AIBN as Photoinitiator

  • Qing-Ling Zhao
  • En-Hui Liu
  • Guo-Xiang Wang
  • Zhao-Hui Hou
  • Xue-Hui Zhan
  • Li-chao Liu
  • Hu Wu
Original Paper


The initiators for continuous activator regeneration atom transfer radical polymerization (ICAR ATRP) of methyl methacrylate (MMA) was successfully carried out in N,N-dimethyl formamide (DMF) at ambient temperature under irradiation with N,N,N′,N′-tetramethyl–1,2-ethanediamine (TMEDA) as ligand, azobisisobutyronitrile (AIBN) as photoinitiator, and CCl4 as initiator. The polymerization obeyed the first-order kinetics. Linear increase of the molecular weight distribution (MWD) with monomer conversion and narrow molecular weight distribution were observed. The polymerization proceeded in a living fashion at 15 °C. The apparent activation energy (Eapp) of 27.23 kJ/mol was obtained based on the slope of the plot of ln (kapp) versus (1/T) and the enthalpy (∆Heq 0) was 5.08 kJ/mol. The polymerization was controlled by periodic light on-off. The living character of polymerization was further demonstrated by chain extension with the resulting PMMA-Cl as macrointiator.


ICAR ATRP Photoinitiated Methyl methacrylate ATRP Catalyst Living polymerization 



The authors are grateful for the financial support by Scientific Research Fund of Hunan Provincial Education Department (Nos. 13A031 and 13C364), the Science and Technology Planning Project of Hunan Province, China (Nos. 2012FJ4272), the National Natural Science Foundation of China (No.51374043), and the Open Foundation of Fine Petrochemical Catalytic and Separating Key Laboratory of Hunan Province.


  1. 1.
    Braunecker WA, Matyjaszewski K (2007) Prog Polym Sci 32:93CrossRefGoogle Scholar
  2. 2.
    Cunningham MF (2008) Prog Polym Sci 33:365CrossRefGoogle Scholar
  3. 3.
    Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) Prog Polym Sci 33:448CrossRefGoogle Scholar
  4. 4.
    Wang JS, Matyjaszewski K (1995) J Am Chem Soc 117:5614CrossRefGoogle Scholar
  5. 5.
    Wang GX, Lu M, Zhong M, Wu H (2012) J Polym Res 19:9782CrossRefGoogle Scholar
  6. 6.
    Wang G-X, Lu M, Hou Z-H, Wu H (2013) J Polym Res 20:80CrossRefGoogle Scholar
  7. 7.
    Mirshafiei-Langari S-A, haddadi-Asl V, Roghani-Mamaqani H, Sobani M, Khezri K (2013) J Polym Res 20:163Google Scholar
  8. 8.
    Perrier S, Takolpuckdee P (2005) J Polym Sci Part A: Polym Chem 43:5347CrossRefGoogle Scholar
  9. 9.
    Leibler L (2005) Prog Polym Sci 30:898CrossRefGoogle Scholar
  10. 10.
    Fouassier JP, Allonas X, Burget D (2003) Prog Organ Coatings 47:16CrossRefGoogle Scholar
  11. 11.
    Guan Z, Smart B (2000) Macromolecules 33:6904CrossRefGoogle Scholar
  12. 12.
    Szablan Z, Lovestead TM, Davis TP, Stenzel MH, Barner-Kowollik C (2007) Macromolecules 40:26CrossRefGoogle Scholar
  13. 13.
    Zhu GH, Zhang LF, Zhang ZB, Zhu J, Tu YF, Cheng ZP, Zhu XL (2011) Macromolecules 44:3233CrossRefGoogle Scholar
  14. 14.
    Mittal A, Sivaram S (2005) J Polym Sci Part A: Polym Chem 43:4996CrossRefGoogle Scholar
  15. 15.
    Ando T, Kamigaito M, Sawamoto M (1997) Macromolecules 30:4507CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.College of ChemistryXiangtan UniversityXiangtanChina
  2. 2.College of Chemistry and Chemical EngineeringHunan Institute of Science and TechnologyYueyangChina
  3. 3.School of Physical and Electronic EngineeringChangsha University of Science and TechnologyChangshaChina

Personalised recommendations