Advertisement

Synthesis and optoelectronic properties of polyimides with naphthyldiphenylamine chromophores

  • Sheng-Huei Hsiao
  • Su-Jung Yeh
  • Hui-Min Wang
  • Wenjeng Guo
  • Y.-R. Kung
Original Paper

Abstract

A series of electroactive polyimides with naphthyldiphenylamine units were prepared from the polycondensation reactions of N,N′-bis(4-aminophenyl)-N,N′-di-2-naphthyl-1,4-phenylenediamine with four tetracarboxylic dianhydrides via a conventional two-step technique. Most of the polyimides were readily soluble in many organic solvents and could be solution-cast into tough and amorphous films. These polyimides exhibited glass-transition temperatures of 288–329 °C and did not show significant decomposition before 500 °C. They showed well-defined and reversible redox couples during both p- and n-doping processes, together with multi-electrochromic behaviors.

Figure

Anodic and cathodic electrochromism of the cast film of polyimide 4b on an ITO-coated glass substrate

Keywords

Polyimides Triarylamine Electrochemistry Electrochromic polymers Redox polymers 

Notes

Acknowledgments

The financial support of the National Science Council in Taiwan is greatly appreciated.

References

  1. 1.
    Wilson D, Stenzenberger HD, Hergenrother PM (eds) (1990) Polyimides. Blackie, Glasgow and LondonGoogle Scholar
  2. 2.
    Sroog CE (1991) Prog Polym Sci 16:561–694CrossRefGoogle Scholar
  3. 3.
    Ghosh MK, Mittal KL (eds) (1996) Polyimides: fundamentals and applications. Marcel Dekker, New YorkGoogle Scholar
  4. 4.
    Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Prog Polym Sci 37:907–974CrossRefGoogle Scholar
  5. 5.
    de Abajo J, de la Campa JG (1999) Adv Polym Sci 140:23–59CrossRefGoogle Scholar
  6. 6.
    Ding M (2007) Prog Polym Sci 32:623–668CrossRefGoogle Scholar
  7. 7.
    Dhara MG, Banerjee S (2010) Prog Polym Sci 35:1022–1077CrossRefGoogle Scholar
  8. 8.
    Harris FW, Hsu SLC (1989) High Perform Polym 1:3–16Google Scholar
  9. 9.
    Chung IS, Kim SY (2000) Macromolecules 33:3190–3193CrossRefGoogle Scholar
  10. 10.
    Chou CH, Reddy DS, Shu CF (2002) J Polym Sci Part A: Polym Chem 40:3615–3621CrossRefGoogle Scholar
  11. 11.
    Hsiao SH, Lin KH (2005) J Polym Sci Part A: Polym Chem 43:331–341CrossRefGoogle Scholar
  12. 12.
    Kwak SM, Yeon JH, Yoon TH (2006) J Polym Sci Part A: Polym Chem 44:2567–2578CrossRefGoogle Scholar
  13. 13.
    Chern YT, Tsai JY, Wang JJ (2009) J Polym Sci Part A: Polym Chem 47:2443–2452CrossRefGoogle Scholar
  14. 14.
    Chung CW, Lin CH, Cheng PW, Hwang HJ, Dai SA (2009) J Polym Sci Part A: Polym Chem 47:2486–2499CrossRefGoogle Scholar
  15. 15.
    Calle M, Lozano AE, de la Campa JG, de Abajo J (2010) Macromolecules 43:2268–2275CrossRefGoogle Scholar
  16. 16.
    Hsiao SH, Wang HM, Chen WJ, Lee TM, Leu CM (2011) J Polym Sci Part A: Polym Chem 49:3109–3120CrossRefGoogle Scholar
  17. 17.
    Hou YJ, Chen GF, Pei XL, Fang XZ (2012) J Polym Res 19:9955CrossRefGoogle Scholar
  18. 18.
    Hsiao SH, Wang HM, Chang PC, Kung YR, Lee TM (2013) J Polym Sci Part A: Polym Chem 51:2925–2938CrossRefGoogle Scholar
  19. 19.
    Wienk MM, Janssen RAJ (1997) J Am Chem Soc 119:4492–4501CrossRefGoogle Scholar
  20. 20.
    Ito A, Ino H, Tanaka K, Kanemoto K, Kato T (2002) J Org Chem 67:491–498CrossRefGoogle Scholar
  21. 21.
    Fukuzaki E, Nishide H (2006) Org Lett 8:1835–1838CrossRefGoogle Scholar
  22. 22.
    Ito A, Sakamaki D, Ichikawa Y, Tanaka K (2011) Chem Mater 23:841–850CrossRefGoogle Scholar
  23. 23.
    Tang CW, VanSlyke SA (1987) Appl Phys Lett 51:913–915CrossRefGoogle Scholar
  24. 24.
    Shirota Y (2000) J Mater Chem 10:1–25CrossRefGoogle Scholar
  25. 25.
    Shirota Y (2005) J Mater Chem 15:75–93CrossRefGoogle Scholar
  26. 26.
    Shirota Y, Kageyama H (2007) Chem Rev 107:953–1010CrossRefGoogle Scholar
  27. 27.
    Thelakkat M (2002) Macromol Mater Eng 287:442–461CrossRefGoogle Scholar
  28. 28.
    Cheng SH, Hsiao SH, Su TH, Liou GS (2005) Macromolecules 38:307–316CrossRefGoogle Scholar
  29. 29.
    Liou GS, Hsiao SH, Chen HW (2006) J Mater Chem 16:1831–1842CrossRefGoogle Scholar
  30. 30.
    Chang CW, Liou GS, Hsiao SH (2007) J Mater Chem 17:1007–1015CrossRefGoogle Scholar
  31. 31.
    Wang HM, Hsiao SH (2009) Polymer 50:1692–1699CrossRefGoogle Scholar
  32. 32.
    Kung YC, Lee WF, Hsiao SH, Liou GS (2011) J Polym Sci Part A: Polym Chem 49:2210–2221CrossRefGoogle Scholar
  33. 33.
    Hsiao SH, Liou GS, Kung YC, Yen HJ (2008) Macromolecules 41:2800–2808CrossRefGoogle Scholar
  34. 34.
    Kung YC, Liou GS, Hsiao SH (2009) J Polym Sci Part A: Polym Chem 47:1740–1755CrossRefGoogle Scholar
  35. 35.
    Hsiao SH, Liou GS, Kung YC, Hsiung TJ (2010) J Polym Sci Part A: Polym Chem 48:3392–3401CrossRefGoogle Scholar
  36. 36.
    Wang HM, Hsiao SH (2011) J Polym Sci Part A: Polym Chem 49:337–351CrossRefGoogle Scholar
  37. 37.
    Hsiao SH, Wang HM, Chang PC, Kung YR, Lee TM (2013) J Polym Res 20:154CrossRefGoogle Scholar
  38. 38.
    Yen HJ, Liou GS (2012) Polym Chem 3:255–264CrossRefGoogle Scholar
  39. 39.
    Wang YF, Chen TM, Okada K, Uekawa M, Nakaya T, Kitamura M, Inoue H (2000) J Polym Sci Part A: Polym Chem 38:2032–2040CrossRefGoogle Scholar
  40. 40.
    Lambert C, Noll G (1999) J Am Chem Soc 121:8434–8442CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sheng-Huei Hsiao
    • 1
  • Su-Jung Yeh
    • 1
  • Hui-Min Wang
    • 1
  • Wenjeng Guo
    • 1
  • Y.-R. Kung
    • 2
  1. 1.Department of Chemical Engineering and BiotechnologyNational Taipei University of TechnologyTaipeiTaiwan
  2. 2.Material and Chemical Research LaboratoriesIndustrial Technology Research InstituteHsinchuTaiwan

Personalised recommendations