Advertisement

Tailor-made molecularly imprinted polymers for dimethoate and deltamethrin recognition: synthesis, characterization and chromatographic evaluation

  • Marco Simões
  • Nuno Martins
  • Maria João Cabrita
  • Anthony J. Burke
  • Raquel Garcia
Original Paper

Abstract

This work concerns the development of molecularly imprinted polymers (MIPs) for the selective extraction of dimethoate (dmt) and deltamethrin (dm) from food matrices. To achieve this goal, the non-covalent methodology has been applied for the preparation of MIPs using metacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) and triethylene glycol dimethacrylate (TEGDMA) as cross-linkers in order to evaluate the influence of the nature of the cross-linker on the efficiency and selectivity of those MIPs for the target pesticides. Non-imprinted polymers (NIPs), which do not contain template, have been also prepared in parallel with the MIP synthesis using the same synthetic protocol to assess the specificity of the interactions. Chemical and physical characterization was carried out using conventional techniques, such as Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and thermogravimetric analysis (TGA). Morphological characterization of MIPs and NIPs has been also performed using scanning electron microscopy (SEM) in order to assess the polymer’s surface topography. The performance of each polymer was evaluated by conducting binding property measurements, namely imprinting factor determinations and adsorption studies using high performance liquid chromatography (HPLC). The results obtained in this study seem to show that there is a correlation between the polymer structure (including its physical characteristics) and their binding properties.

Keywords

Molecularly imprinted polymer (MIP) Dimethoate Deltamethrin Scanning electron microscopy (SEM) Rebinding studies 

Notes

Acknowledgments

This work is funded by FEDER Funds through the Operational Programme for Competitiveness Factors–COMPETE and National Funds through FCT–Foundation for Science and Technology under the Strategic Projects PEst-C/Agr/UI0115/2011 and PEst-OE/QUI/UI0619/2011 and Project PTDC/AGR-ALI/117544/2010. Prof. Peter Carrott and Ms. Louisa Marques are acknowledged for their assistance with the TGA study. Laboratory HERCULES at the University of Évora is acknowledged for the SEM analyses. Prof. João Rocha and the solid state NMR service at CICECO, University of Aveiro, Portugal are thanked for the solid state MAS-31P NMR study.

References

  1. 1.
    Bui BTSK (2010) Haupt Anal Bioanal Chem 398:2481–2492CrossRefGoogle Scholar
  2. 2.
    Vasapollo G, Del Sole R, Mergola L, Lazzoi MR, Scardino A, Scorrano S, Mele G (2011) Int J Mol Sci 12:5908–5945CrossRefGoogle Scholar
  3. 3.
    Garcia R, Cabrita MJ, Freitas AMC (2011) Am J Anal Chem 2:16–25CrossRefGoogle Scholar
  4. 4.
    García-Calzón JA, Díaz-García ME (2007) Sens and Actuators B 123:1180–1194CrossRefGoogle Scholar
  5. 5.
    Martín-Esteban A (2013) Trends Anal Chem 45:169–181CrossRefGoogle Scholar
  6. 6.
    Ansell RJ, Kriz D, Mosbach K (1996) Curr Opin Biotechnol 7:89–94CrossRefGoogle Scholar
  7. 7.
    Nunez O, Gallart-Ayala H, Martins CPB, Lucci P (2012) J Chromatogr A 1228:298–323CrossRefGoogle Scholar
  8. 8.
    Alexander C, Davidson L, Hayes W (2003) Tetrahedron 59:2025–2057CrossRefGoogle Scholar
  9. 9.
    Corma A (2004) Sci Eng 46:369–417Google Scholar
  10. 10.
    Kloskowski A, Pilarczyk M, Przyjazny A, Namiesnik J (2009) Anal Chem 39:43–58Google Scholar
  11. 11.
    Augusto F, Carasek E, Silva RGC, Rivellino SR, Batista AD, Martendal E (2010) J Chrom A 1217:2533–2542CrossRefGoogle Scholar
  12. 12.
    Beltran A, Borrull F, Marcé RM (2010) TrAC Trends Anal Chem 29:1363–1375CrossRefGoogle Scholar
  13. 13.
    Hu Y, Pan J, Zhang K, Lian H, Li G (2013) TrAC Trends Anal Chem 43:37–52CrossRefGoogle Scholar
  14. 14.
    Moreno-Bondi MC, Navarro-Villoslada F, Benito-Pena E, Urraca JL (2008) Curr Anal Chem 4:316–340CrossRefGoogle Scholar
  15. 15.
    Shimizu KD, Stephenson CJ (2010) Curr Opin Chem Biol 14:743–750CrossRefGoogle Scholar
  16. 16.
    Malitesta C, Mazzotta E, Picca R, Poma A, Chianella I, Piletsky S (2012) Anal Bioanal Chem 402:1827–1846CrossRefGoogle Scholar
  17. 17.
    Cunliffe D, Kirby A, Alexander C (2005) Adv Drug Delivery Reviews 57:1836–1853Google Scholar
  18. 18.
    Rathbone DL (2005) Adv Drug Delivery Reviews 57:1854–1874CrossRefGoogle Scholar
  19. 19.
    Regulation (EC) No. 396/2005 of the European Parliament and of the council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC, and subsequent updates, http://ec.europa.eu/food/plant/protection/pesticides/inex_en.htm. and Codex Alimentarius Committee on Pesticide Residues, Joint FAO/WHO Meeting on Pesticide Residues (last update 2009) http://www.codexalimentarius.net/mrls/pestdes/jsp/pest_q-e.jsp
  20. 20.
    Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) J AOAC Int 86:412–431Google Scholar
  21. 21.
    Wilkowska A, Biziuk M (2011) Food Chem 125:803–812CrossRefGoogle Scholar
  22. 22.
    Okutucu B, Onal S (2011) Talanta 87:74–79CrossRefGoogle Scholar
  23. 23.
    Pichon V, Chapuis-Hugon F (2008) Anal Chim Acta 622:48–61CrossRefGoogle Scholar
  24. 24.
    Chapuis F, Pichon V, Lanza F, Sellergren B, Hennion MC (2004) J Chromatogr B 804:93–101CrossRefGoogle Scholar
  25. 25.
    Tom LA, Schneck NA, Walter C (2012) J Chromatogr B 909:61–64CrossRefGoogle Scholar
  26. 26.
    Xu S, Li J, Chen L (2011) Talanta 85:282–343CrossRefGoogle Scholar
  27. 27.
    Matsui J, Kubo H, Takeuchi T (1998) Anal Sci 14:699–702CrossRefGoogle Scholar
  28. 28.
    Siemann M, Andersson LI, Mosbach K (1998) J Agric Food Chem 44:141–145CrossRefGoogle Scholar
  29. 29.
    Piletska EV, Guerreiro AR, Whitcombe MJ, Piletsky SA (2009) Macromolecules 42:4921–4928CrossRefGoogle Scholar
  30. 30.
    Martin P, Jones GR, Stringer F, Wilson ID (2003) Analyst 128:345–181CrossRefGoogle Scholar
  31. 31.
    Andersson LI, Paprica A, Arvidsson T (1997) Chromatographia 46:57–66CrossRefGoogle Scholar
  32. 32.
    López MMC, Pérez MCC, García MSD, Vilarino JML, Rodríguez MVG, Losada L-FB (2012) Anal Chim Acta 721:68–78CrossRefGoogle Scholar
  33. 33.
    Holland N, Frisby J, Owens E, Hughes H, Duggan P, McLoughlin P (2010) Polymer 51:1578–1584CrossRefGoogle Scholar
  34. 34.
    Tang K, Chen S, Gu X, Wang H, Dai J, Tang J (2008) Anal Chim Acta 614:112–118CrossRefGoogle Scholar
  35. 35.
    Xu ZF, Wen G, Kuang DZ, Zhang FX, Tang SP (2013) J Environ Sci Health Part B 48:336–343CrossRefGoogle Scholar
  36. 36.
    Bakas I, Oujji NB, Moczko E, Istamboulie G, Piletsky S, Piletska E, Ait-Ichou I, Ait-Addi E, Noguer Rouillon TR (2013) J Chromatogr A 1274:13–18CrossRefGoogle Scholar
  37. 37.
    Lv Y, Lin Z, Feng W, Zhou X, Tan T (2007) Biochem Eng J 36:221–229CrossRefGoogle Scholar
  38. 38.
    Pap T, Horvai G (2004) J Chromatogr B 804:167–172CrossRefGoogle Scholar
  39. 39.
    Corton E, García-Calzón JA, Díaz-García ME (2007) J Non-Cryst Solids 353:974–980CrossRefGoogle Scholar
  40. 40.
    Umpleby RJ II, Baxter SC, Bode M, Berch JK Jr, Shah RN, Shimizu KD (2001) Anal Chim Acta 435:35–42CrossRefGoogle Scholar
  41. 41.
    Rampey AM, Umpleby RJ, Rushton GT, Iseman JC, Shah RN, Shimizu KD (2004) Anal Chem 76:1123–1133CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Marco Simões
    • 1
  • Nuno Martins
    • 2
  • Maria João Cabrita
    • 2
  • Anthony J. Burke
    • 1
  • Raquel Garcia
    • 2
  1. 1.Departamento de Química e Centro de Química de ÉvoraUniversidade de ÉvoraÉvoraPortugal
  2. 2.ICAAM–Instituto de Ciências Agrárias e Ambientais MediterrânicasUniversidade de ÉvoraÉvoraPortugal

Personalised recommendations