Journal of Polymer Research

, 21:356 | Cite as

Effects of ionic solvent-free carbon nanotube nanofluid on the properties of polyurethane thermoplastic elastomer

  • Shu-Ying Gu
  • Ling-Ling Liu
  • Bei-bei Yan
Original Paper


A solvent-free ionic carbon nanotube (CNT) nanofluid with about 80 wt.% organic content was synthesized by oxidation of CNTs with mixed acid followed by a surface reaction with PEG-substituted tertiary amine. The CNT nanofluid and the pristine CNTs were introduced to polyurethane (PU) by melt-blending. The structures and properties of the nanofluid and the nanocomposites were investigated. The results show that the CNT nanofluid is in a viscous liquid state at room temperature and is stable and soluble in both aqueous and organic solvents. The CNT nanofluid distributes homogenously in the PU matrix. Due to the high content organic chains on the CNT surfaces, the breaking strength and elastic modulus of the nanocomposite decrease slightly but with about 100 % increase of breaking elongation and 50 % increase of toughness. Better dispersion of the nanofluid leads to more improvement of electrical conductivities of the composite. The solvent-free ionic nanofluid will be an excellent nanofiller in the nanocomposites.


Solvent-free carbon nanotube nanofluid Nanocomposites Polyurethane Thermal properties Mechanical properties Electrical conductivities 



The work was supported by National R&D program (Grant No. 2012BAI17B05).


  1. 1.
    Tate JS, Akinola AT, Kabakov D (2009) J Technol Stud 35(1):25–32Google Scholar
  2. 2.
    Chattopadhyay DK, Raju KVSN (2007) Prog Polym Sci 32(3):352–418CrossRefGoogle Scholar
  3. 3.
    Njuguna J, Pielichowski K (2003) Adv Eng Mater 5(11):769–778CrossRefGoogle Scholar
  4. 4.
    Liu C, Qin H, Mather PT (2007) J Mater Chem 17(16):1543–1548CrossRefGoogle Scholar
  5. 5.
    Hu JL, Lu J, Zhu Y (2008) Polym Rev 48(2):275–301CrossRefGoogle Scholar
  6. 6.
    Yoo HJ, Jung YC, Sahoo NG, Cho JW (2006) J Macromol Sci B 45(4):441–451CrossRefGoogle Scholar
  7. 7.
    Cho JW, Kim JW, Jung YC, Goo NS (2005) Macromol Rapid Commun 26(5):412–416CrossRefGoogle Scholar
  8. 8.
    Verdejo R, Stampfli R, Alvarez-Lainez M, Mourad S, Rodriguez-Perez MA, Bruhwiler PA et al (2009) Compos Sci Technol 69(10):1564–1569CrossRefGoogle Scholar
  9. 9.
    Xiong J, Zheng Z, Qin X, Li M, Li H, Wang X (2006) Carbon 44(13):2701–2707CrossRefGoogle Scholar
  10. 10.
    Zhao JC, Du FP, Zhou XP, Cui W, Wang XM, Zhu H et al (2011) Composites B 42(8):2111–2116CrossRefGoogle Scholar
  11. 11.
    Gupta TK, Singh BP, Teotia S, Katyal V, Dhakate SR, Mathur RB (2013) J Polym Res 20(6):169CrossRefGoogle Scholar
  12. 12.
    Gupta TK, Singh BP, Dhakate SR, Singh VN, Mathur RB (2013) J Mater Chem A 1(32):9138–9149CrossRefGoogle Scholar
  13. 13.
    Mathur RB, Pande S, Singh BP, Dhami TL (2008) Polym Compos 29(7):717–727CrossRefGoogle Scholar
  14. 14.
    Wu CS, Liao HT (2013) J Polym Res 20(10):253CrossRefGoogle Scholar
  15. 15.
    Hatui G, Das CK (2013) J Polym Res 20(2):77CrossRefGoogle Scholar
  16. 16.
    Fonseca MA, Abreu B, Goncalves FAMM, Ferreira AGM, Moreira RAS, Oliveira MSA (2013) Compos Struct 99:105–111CrossRefGoogle Scholar
  17. 17.
    Zhang Q, Rastogi S, Chen D, Lippits D, Lemstra PJ (2006) Carbon 44(4):778–785CrossRefGoogle Scholar
  18. 18.
    Rodriguez R, Herrera R, Archer LA, Giannelis EP (2008) Adv Mater 20(22):4353–4358CrossRefGoogle Scholar
  19. 19.
    Li Q, Dong L, Fang J, Xiong C (2010) ACS Nano 4(10):5797–5806CrossRefGoogle Scholar
  20. 20.
    Jespersen ML, Mirau PA, Meerwall EV, Vaia RA, Rodriguez R, Giannelis EP (2010) ACS Nano 4(7):3735–3742CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Gu S, Yan B, Ren J (2012) J Mater Chem 22(30):14843–14846CrossRefGoogle Scholar
  22. 22.
    Gu S, Zhang Y, Yan B (2013) Mater Lett 97:169–172CrossRefGoogle Scholar
  23. 23.
    Lan L, Zheng YP, Zhang AB, Zhang JX (2012) J Nanopart Res 14(3):753–763CrossRefGoogle Scholar
  24. 24.
    Bourlinos AB, Georgakilas V, Tzitzios V, Boukos N, Herrera R, Giannelis EP (2006) Small 2(10):1188–1191CrossRefGoogle Scholar
  25. 25.
    Lei Y, Xiong C, Guo H, Yao J, Dong L, Su X (2008) J Am Chem Soc 130(11):3256–3257CrossRefGoogle Scholar
  26. 26.
    Gofman I, Zhang B, Zang W, Zhang Y, Song G, Chen C, Li Y (2013) J Polym Res 20(10):258CrossRefGoogle Scholar
  27. 27.
    Zheng Y, Zhang J, Lan L, Yu P, Rodriguez R, Herrera R et al (2010) Chem Phys Chem 11(1):61–64CrossRefGoogle Scholar
  28. 28.
    Pattanayak A, Jana SC (2005) Polymer 46(10):3394–3406CrossRefGoogle Scholar
  29. 29.
    Ferreira T, Paiva MC, Pontes AJ (2013) J Polym Res 20(11):301CrossRefGoogle Scholar
  30. 30.
    Mallakpour S, Zadehnazari A (2013) J Polym Res 20(7):192CrossRefGoogle Scholar
  31. 31.
    Lee HF, Yu HH (2011) Soft Matter 7(8):3801–3807CrossRefGoogle Scholar
  32. 32.
    Xiong J, Zheng Z, Song W, Zhou D, Wang X (2008) Compos A 39(5):904–910CrossRefGoogle Scholar
  33. 33.
    He Z, Satarkar N, Xie T, Cheng YT, Hilt JZ (2011) Adv Mater 23(28):3192–3196CrossRefGoogle Scholar
  34. 34.
    Bae CY, Park JH, Kim EY, Kang YS, Kim BK (2011) J Mater Chem 21(30):11288–11295CrossRefGoogle Scholar
  35. 35.
    Cayla A, Campagne C, Rochery M, Devaux E (2011) Synth Met 161(11–12):1034–1042CrossRefGoogle Scholar
  36. 36.
    Abbasi S, Carreau PJ, Derdouri A (2010) Polymer 51(4):922–935CrossRefGoogle Scholar
  37. 37.
    Al-Shabanat M (2012) J Polym Res 19(2):9795CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTongji UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and EngineeringTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations