Journal of Polymer Research

, 21:352 | Cite as

Mechanical, rheological, and thermal behavior assessments in HDPE/PA-6/EVOH ternary blends with variable morphology

  • Hadi Rastin
  • Seyed Hassan Jafari
  • Mohammad Reza Saeb
  • Hossein Ali Khonakdar
  • Udo Wagenknecht
  • Gert Heinrich
Original Paper


The mechanical, rheological, and thermal properties of various binary and ternary blends based on polyamide 6 (PA-6), high-density polyethylene (HDPE), and poly vinyl alcohol (EVOH) with variable morphology were comprehensively studied to give a perspective on interfacial adhesion situation. In this regard, transitions in the phase morphology of ternary systems were traced by means of scanning electron microscopic investigations, varying the type of matrix and composition in the minority phase. Theoretical and experimental analyses of impact and tensile properties provided support for the compatibilizing action of EVOH on HDPE/PA-6 immiscible blends. Rheological and thermal studies were also performed to make a broader image on the interphase region in ternary systems with core-shell and individually-dispersed minor domains. The most interesting finding was that there is a tendency for PA-6 to partially encapsulate HDPE domains within the EVOH continuous phase. This is roughly supported by SEM micrographs, but yield stress measurements placed too much emphasis on the morphological status.


HDPE/PA-6/EVOH ternary blends Interfacial adhesion Ultimate properties Compatibilizing action 


  1. 1.
    Deng S, Zhao X, Huang Y, Han X, Liu H, Hu Y (2011) Deformation and fracture of polystyrene/polypropylene blends: a simulation study. Polymer 52:5681–5694CrossRefGoogle Scholar
  2. 2.
    Busche BJ, Tonelli AE, Balik CM (2010) Morphology of polystyrene/poly(dimethyl siloxane) blends compatibilized with star polymers containing a γ–cyclodextrin core and polystyrene arms. Polymer 51:1465–1471CrossRefGoogle Scholar
  3. 3.
    Bhadane PA, Tsou AH, Cheng J, Ellul M, Favis BD (2011) Morphology and continuity development in highly reactive nanoscale polymer blends. Polymer 52:5107–5117CrossRefGoogle Scholar
  4. 4.
    Ravati S, Favis BD (2010) Low percolation threshold conductive device derived from a five-component polymer blend. Polymer 51:3669–3684CrossRefGoogle Scholar
  5. 5.
    Ravati S, Favis BD (2011) 3D porous polymeric conductive material prepared using LbL deposition. Polymer 52:718–731CrossRefGoogle Scholar
  6. 6.
    Ravati S, Favis BD (2010) Morphological states for a ternary polymer blend demonstrating complete wetting. Polymer 51:4547–4561CrossRefGoogle Scholar
  7. 7.
    Virgilio N, Sarazin P, Favis BD (2011) Ultraporous poly(l-lactide) scaffolds prepared with quaternary immiscible polymer blends modified by copolymer brushes at the interface. Polymer 52:1483–1489CrossRefGoogle Scholar
  8. 8.
    Virgilio N, Sarazin P, Favis BD (2010) Towards ultraporous poly(l-lactide) scaffolds from quaternary immiscible polymer blends. Biomaterials 31:5719–5728CrossRefGoogle Scholar
  9. 9.
    Bhattacharyya AR, Ghosh AK, Misra A, Eichhorn KJ (2005) Reactively compatibilised polyamide6/ethylene-co-vinyl acetate blends: mechanical properties and morphology. Polymer 46:1661–1674CrossRefGoogle Scholar
  10. 10.
    Zhong G, Wang K, Zhang L, Li Z-M, Fong H, Zhu L (2011) Nanodroplet formation and exclusive homogenously nucleated crystallization in confined electrospun immiscible polymer blend fibers of polystyrene and poly(ethylene oxide). Polymer 52:5397–5402CrossRefGoogle Scholar
  11. 11.
    Takahashi S, Okada H, Nobukawa S, Yamaguchi M (2012) Optical properties of polymer blends composed of poly(methyl methacrylate) and ethylene–vinyl acetate copolymer. Eur Polym J 48:974–980CrossRefGoogle Scholar
  12. 12.
    Zhang X, Li B, Wang K, Zhang Q, Fu Q (2009) The effect of interfacial adhesion on the impact strength of immiscible PP/PETG blends compatibilized with triblock copolymers. Polymer 50:4737–4744CrossRefGoogle Scholar
  13. 13.
    Veenstra H, Verkooijen PCJ, van Lent BJJ, van Dam J, de Boer AP, Nijhof APHJ (2000) On the mechanical properties of co-continuous polymer blends: experimental and modelling. Polymer 41:1817–1826CrossRefGoogle Scholar
  14. 14.
    Sivalingam G, Karthik R, Madras G (2004) Blends of poly(ε-caprolactone) and poly(vinyl acetate): mechanical properties and thermal degradation. Polym Degrad Stab 84:345–351CrossRefGoogle Scholar
  15. 15.
    Yordanov C, Minkova L (2005) Fractionated crystallization of compatibilized LDPE/PA6 blends. Eur Polym J 41:527–534CrossRefGoogle Scholar
  16. 16.
    Bose S, Bhattacharyya AR, Kodgire PV, Misra A (2007) Fractionated crystallization in PA6/ABS blends: influence of a reactive compatibilizer and multiwall carbon nanotubes. Polymer 48:356–362CrossRefGoogle Scholar
  17. 17.
    Sung YT, Han MS, Hyun JC, Kim WN, Lee HS (2003) Rheological properties and interfacial tension of polypropylene–poly(styrene-co-acrylonitrile) blend containing compatibilizer. Polymer 44:1681–1687CrossRefGoogle Scholar
  18. 18.
    Horiuchi S, Matchariyakul N, Yase K, Kitano T, Choi HK, Lee YM (1997) Compatibilizing effect of maleic anhydride functionalized SEBS triblock elastomer through a reaction induced phase formation in the blends of polyamide6 and polycarbonate: 2 Mechanical properties. Polymer 38:59–78CrossRefGoogle Scholar
  19. 19.
    Valera TS, Morita AT, Demarquette NR (2006) Study of Morphologies of PMMA/PP/PS Ternary Blends. Macromolecules 39:2663–2675CrossRefGoogle Scholar
  20. 20.
    Horiuchi S, Matchariyakul N, Yase K, Kitano T (1997) Morphology Development through an Interfacial Reaction in Ternary Immiscible Polymer Blends. Macromolecules 30:3664–3670CrossRefGoogle Scholar
  21. 21.
    Saeb MR, Khonakdar HA, Razban M, Jafari SH, Garmabi H, Wagenknecht U (2012) Morphology Prediction in HDPE/PA-6/EVOH Ternary Blends: Defining the Role of Elasticity Ratio. Macromol Chem Phys 213:1791–1802CrossRefGoogle Scholar
  22. 22.
    Shokoohi S, Arefazar A (2009) A review on ternary immiscible polymer blends: morphology and effective parameters. Polym Adv Technol 20:433–447CrossRefGoogle Scholar
  23. 23.
    Reignier J, Favis BD, Heuzey M-C (2003) Factors influencing encapsulation behavior in composite droplet-type polymer blends. Polymer 44:49–59CrossRefGoogle Scholar
  24. 24.
    Virgilio N, Desjardins P, L’Espérance G, Favis BD (2009) In Situ Measure of Interfacial Tensions in Ternary and Quaternary Immiscible Polymer Blends Demonstrating Partial Wetting. Macromolecules 42:7518–7529CrossRefGoogle Scholar
  25. 25.
    Yeh J-T, Huang S-S, Yao W-H, Wang I-J, Chen C-C (2004) Oxygen permeation resistance of polyethylene, polyethylene/ethylene vinyl alcohol copolymer, polyethylene/modified ethylene vinyl alcohol copolymer, and polyethylene/modified polyamide–ethylene vinyl alcohol copolymer bottles. J Appl Polym Sci 92:2528–2537CrossRefGoogle Scholar
  26. 26.
    Yeh J-T, Huang S-S, Chen H-Y (2005) Barrier resistance of polyethylene, polyethylene/modified polyamide, and polyethylene/blends of modified polyamide and ethylene vinyl alcohol bottles against permeation of polar and nonpolar mixed solvents. J Appl Polym Sci 97:1333–1344CrossRefGoogle Scholar
  27. 27.
    Yeh J-T, Chen H-Y, Tsai F-C (2006) Gasoline Permeation Resistance of Polypropylene, Polypropylene/Ethylene Vinyl Alcohol, Polypropylene/Modified Polyamide, and Polypropylene/Blends of Modified Polyamide and Ethylene Vinyl Alcohol Containers. J Polym Res 13:451–460CrossRefGoogle Scholar
  28. 28.
    Yeh J-T, Huang S-S, Yao W-H (2002) Gasoline Permeation Resistance of Containers of Polyethylene, Polyethylene/Modified Polyamide and Polyethylene/Blends of Modified Polyamide and Ethylene Vinyl Alcohol. Macromol Mater Eng 287:532–538CrossRefGoogle Scholar
  29. 29.
    Yeh J-T, Chao C-C, Chen C-H (2000) Effects of processing conditions on the barrier properties of polyethylene (PE)/modified polyamide (MPA) and modified polyethylene (MPE)/polyamide (PA) blends. J Appl Polym Sci 76:1997–2008CrossRefGoogle Scholar
  30. 30.
    Samios CK, Kalfoglou NK (1998) Compatibilization of poly(ethylene-co-vinyl alcohol) (EVOH) and EVOH/HDPE blends with ionomers. Structure and properties. Polymer 39:3863–3870CrossRefGoogle Scholar
  31. 31.
    Lagaron JM, Powell AK, Bonner G (2001) Permeation of water, methanol, fuel and alcohol-containing fuels in high-barrier ethylene–vinyl alcohol copolymer. Polym Test 20:569–577CrossRefGoogle Scholar
  32. 32.
    Wang B, Yang Y, Guo W (2012) Effect of EVOH on the morphology, mechanical and barrier properties of PA6/POE-g-MAH/EVOH ternary blends. Mater Des 40:185–189CrossRefGoogle Scholar
  33. 33.
    Steinmann S, Gronski W, Friedrich C (2001) Cocontinuous polymer blends: influence of viscosity and elasticity ratios of the constituent polymers on phase inversion. Polymer 42:6619–6629CrossRefGoogle Scholar
  34. 34.
    Saeb MR, Khonakdar HA, Jafari SH, Jalalifar N, Razban M, Wagenknecht U (2013) Interface evaluation in the ternary blends of HDPE/PA-6/EVOH. Polymer Bulletin. doi: 10.1007/s00289-013-1082-1
  35. 35.
    Luzinov I, Pagnoulle C, Jérôme R (2000) Ternary polymer blend with core–shell dispersed phases: effect of the core-forming polymer on phase morphology and mechanical properties. Polymer 41:7099–7109CrossRefGoogle Scholar
  36. 36.
    Luzinov I, Xi K, Pagnoulle C, Huynh-Ba G, Jérôme R (1999) Composition effect on the core–shell morphology and mechanical properties of ternary polystyrene/styrene–butadiene rubber/polyethylene blends. Polymer 40:2511–2520CrossRefGoogle Scholar
  37. 37.
    Liu ZH, Maréchal P, Jérôme R (1998) Blends of poly(vinylidene fluoride) with polyamide 6: interfacial adhesion, morphology and mechanical properties. Polymer 39:1779–1785CrossRefGoogle Scholar
  38. 38.
    Choudhury A, Balmurulikrishnan A, Sarkhel G (2008) Polyamide 66/EPR-g-MA blends: mechanical modeling and kinetic analysis of thermal degradation. Polym Adv Technol 19:1226–1235CrossRefGoogle Scholar
  39. 39.
    Shan G-F, Yang W, Tang X-G, Yang M-B, Xie B-H, Fu Q, Mai Y-W (2010) Multiple melting behaviour of annealed crystalline polymers. Polym Test 29:273–280CrossRefGoogle Scholar
  40. 40.
    Wilkinson AN, Clemens ML, Harding VM (2004) The effects of SEBS-g-maleic anhydride reaction on the morphology and properties of polypropylene/PA6/SEBS ternary blends. Polymer 45:5239–5249CrossRefGoogle Scholar
  41. 41.
    Li R, Zhang X, Zhao Y, Hu X, Zhao X, Wang D (2009) New polypropylene blends toughened by polypropylene/poly(ethylene-co-propylene) in-reactor alloy: compositional and morphological influence on mechanical properties. Polymer 50:5124–5133CrossRefGoogle Scholar
  42. 42.
    L-p L, Yin B, Zhou Y, Gong L, M-b Y, B-h X, Chen C (2012) Characterization of PA6/EPDM-g-MA/HDPE ternary blends: the role of core-shell structure. Polymer 53:3043–3051CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Hadi Rastin
    • 1
  • Seyed Hassan Jafari
    • 1
  • Mohammad Reza Saeb
    • 2
  • Hossein Ali Khonakdar
    • 3
    • 4
  • Udo Wagenknecht
    • 4
  • Gert Heinrich
    • 4
    • 5
  1. 1.School of Chemical Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Department of Resin and AdditivesInstitute for Color Science and TechnologyTehranIran
  3. 3.Department of Polymer ProcessingIran Polymer and Petrochemical InstituteTehranIran
  4. 4.Leibniz-Institute of Polymer Research DresdenDresdenGermany
  5. 5.Institut für WerkstoffwissenschaftTechnische Universität DresdenDresdenGermany

Personalised recommendations