Journal of Polymer Research

, 21:342 | Cite as

Siloxane core dianhydride modified ether linked cyclohexyl diamine based multi-walled carbon nanotube reinforced polyimide (MWCNT/PI) nanocomposites

  • S. G. Gunasekaran
  • K. Rajakumar
  • M. Alagar
  • M. Dharmendirakumar
Original Paper


A new type of siloxane core based polyimide (PI) was designed and developed by the reaction between siloxane core dianhydride (SDA) and ether linked cyclohexyl diamine (ELCD), using the in-situ polymerization approach via thermal imidization. This PI was further modified with different loading levels of MWCNTs to get MWCNT reinforced PI nanocomposites. The synthesized PIs were then characterized, using analytical methods. From the thermal analysis, it was observed that the values of T g are increased by about 12 % by incorporating the amine functionalized MWCNTs into the PI matrix than that of neat PI. This is because of the constraint effect of MWCNTs as well as the reduction in the movement of the polymer chains. They also exhibited enhanced values of the dielectric constant, with the successive increase in the incorporation of MWCNTs to the PI matrix. No aggregation and better homogeneity of MWCNTs throughout the PI matrix have been achieved, as evidenced from scanning electron microscopy (SEM). The transmission electron microscopy (TEM) studies indicate that there are no confined domains in and around the region of MWCNTs, after the formation of nanocomposites. It is ascertained that the newly designed MWCNT/PI nanocomposite is responsible for the significant improvement of dispersion, thus possesses attractive flame retardancy and insulation behaviour.


MWCNT Polyimide Glass transition temperature Thermal properties Dielectric constant Morphology 



The authors acknowledge Dr. Jayavel, Director, Centre for Nanoscience and Nanotechnology, Anna University, Chennai, India for providing DSC and SEM analytical facility.


  1. 1.
    Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Polymer 44:5893–5899CrossRefGoogle Scholar
  2. 2.
    Ree M (2006) Macromol Res 14:1–33CrossRefGoogle Scholar
  3. 3.
    Iijima S (1991) Nature 354:56–58CrossRefGoogle Scholar
  4. 4.
    Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Polymer 40:5967–5971CrossRefGoogle Scholar
  5. 5.
    Zhang WD, Shen L, Phang IY, Liu TX (2004) Macromolecules 37:256–259CrossRefGoogle Scholar
  6. 6.
    Ge JJ, Zhang D, Li Q, Hou H, Graham MJ, Dai L, Harris FW, Cheng SZD (2005) J Am Chem Soc 127:9984–9985CrossRefGoogle Scholar
  7. 7.
    Qu LW, Lin Y, Hill DE, Zhou B, Wang W, Sun X, Kitaygorodskiy A, Suarez M, Connell JW, Allard LF, Sun YP (2004) Macromolecules 37:6055–6060CrossRefGoogle Scholar
  8. 8.
    Lau KT, Lu M, Lam CK, Cheung HY, Sheng FL, Li HL (2005) Compos Sci Technol 65:719–725CrossRefGoogle Scholar
  9. 9.
    Satapathy BK, Weidisch R, Potschke P, Janke A (2005) Macromol Rapid Commun 26:1246–1252CrossRefGoogle Scholar
  10. 10.
    Park C, Ounaies Z, Watson KA, Crooks RE, Smith J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, St. Clair TL (2002) Chem Phys Lett 364:303–308CrossRefGoogle Scholar
  11. 11.
    Park C, Crooks RE, Siochi EJ, Harrison JS, Evan N, Kenik E (2003) Nanotechnology 14:L11–14CrossRefGoogle Scholar
  12. 12.
    Wise KE, Park C, Siochi EJ, Harrison JS (2004) Chem Phys Lett 391:207–211CrossRefGoogle Scholar
  13. 13.
    Delozier DM, Tigelaar DM, Watson KA, Smith JG Jr, Klein DJ, Lillehei PT, Connell JW (2005) Polymer 46:2506–2521CrossRefGoogle Scholar
  14. 14.
    Besancon BM, Green PF (2005) Macromolecules 38:110–115CrossRefGoogle Scholar
  15. 15.
    Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J (2002) Macromol Rapid Commun 23:761–765CrossRefGoogle Scholar
  16. 16.
    Zhu BK, Xie SH, Xu ZK, Xu YY (2006) Compos Sci Technol 66:548–554CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Dang Z, Fu S, Xin J, Deng J, Wu J, Yang S, Li L, Yan Q (2005) Chem Phys Lett 401:553–557CrossRefGoogle Scholar
  18. 18.
    Ounaies Z, Park C, Wise KE, Siochici EJ, Harrison JS (2003) Compos Sci Technol 63:1637–1646CrossRefGoogle Scholar
  19. 19.
    Delozier DM, Watson KA, Smith JG Jr, Clancy TC, Connell JW (2004) Macromolecules 39:1731–1739CrossRefGoogle Scholar
  20. 20.
    Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M (2000) J Phys Chem B 104:8911–8915CrossRefGoogle Scholar
  21. 21.
    Thanikai Velan TV, Ashok Kumar A, Alagar M (2000) Polym Compos 21:739–744CrossRefGoogle Scholar
  22. 22.
    Ashok Kumar A, Alagar M, Rao RMVGK (2002) Polymer 43:693–702CrossRefGoogle Scholar
  23. 23.
    Bruma M, Sava I, Damaceanu MD, Belomoina NM, Robinson J (2008) Rev Roum Chim 53:803–811Google Scholar
  24. 24.
    Suresh Kumar R, Alagar M (2006) J Appl Polym Sci 101:668–674CrossRefGoogle Scholar
  25. 25.
    Nagendiran S, Karikal Chozhan C, Alagar M, Hamerton I (2008) High Perform Polym 20:323–347CrossRefGoogle Scholar
  26. 26.
    Prado SLA, Torriani IL, Yoshida IVP (2010) Polym Sci Polym Chem 48:1220–1229CrossRefGoogle Scholar
  27. 27.
    Li HT, Lin MS, Chuang HR, Wang MW (2005) J Polym Res 12:385–391CrossRefGoogle Scholar
  28. 28.
    Chen KC, Li HT, Huang SC, Chen WB, Sun KW, Chang FC (2011) Polym Int 60:1089–1096CrossRefGoogle Scholar
  29. 29.
    Devaraju S, Vengatesan MR, Alagar M (2011) High Perform Polym 23:99–111CrossRefGoogle Scholar
  30. 30.
    Devaraju S, Vengatesan MR, Selvi M, Ashok Kumar A, Alagar M (2012) High Perform Polym 24:1–12CrossRefGoogle Scholar
  31. 31.
    Liaw DJ, Liaw BY (2001) Polymer 42:839–845CrossRefGoogle Scholar
  32. 32.
    Liaw DJ, Liaw BY, Yang CM (1999) Macromolecules 32:7248–7250CrossRefGoogle Scholar
  33. 33.
    Shahram M, Hani H (2003) Macromol Symp 193:159–168CrossRefGoogle Scholar
  34. 34.
    Takeichi T, Agag T, Zeidam R (2001) J Polym Sci Part A: Polym Chem 39:2633–2641CrossRefGoogle Scholar
  35. 35.
    Liu T, Tong Y, Zhang WD (2007) Comp Sci Technol 67:406–412CrossRefGoogle Scholar
  36. 36.
    Yuen SM, Ma CCM, Teng CC, Wu HH, Kuan HC, Chiang CL (2008) J Polym Sci Part B: Polym Phys 46:472–482CrossRefGoogle Scholar
  37. 37.
    Xu J, Yao P, Li X, He F (2008) Mater Sci Eng B 151:210–219CrossRefGoogle Scholar
  38. 38.
    Seckin T, Koytepe S, Ibrahim HA (2008) Mater Chem Phys 112:1040–1046CrossRefGoogle Scholar
  39. 39.
    Zhu PK, Li ZB, Wang Q, Feng W, Wang LX (1997) J Appl Polym Sci 64:1463–1468CrossRefGoogle Scholar
  40. 40.
    Liu YL, Chiu YC, Wu CS (2003) J Appl Polym Sci 87:404–411CrossRefGoogle Scholar
  41. 41.
    Tao Z, Yang S, Chen J, Fan L (2007) European Polym J 43:1470–1479CrossRefGoogle Scholar
  42. 42.
    Chandramohan A, Nagendiran S, Alagar M (2011) J Comp Mater 46:773–781CrossRefGoogle Scholar
  43. 43.
    Yasufumi W, Yuji S, Shinji A, Mitsuru U (2005) Polymer 46:5903–5908CrossRefGoogle Scholar
  44. 44.
    Hill D, Lin Y, Qu LW, Kitaygorodskiy A, Connell JW, Allard LF, Sun YP (2005) Macromolecules 38:7670–7675CrossRefGoogle Scholar
  45. 45.
    Yuen SM, Ma CCM, Chiang CL, Teng CC (2008) J Nanomater 2008:1–15CrossRefGoogle Scholar
  46. 46.
    Jiang XW, Bin YZ, Matsuo M (2005) Polymer 46:7418–7424CrossRefGoogle Scholar
  47. 47.
    Kim BS, Bae SH, Park YH, Kim JH (2007) Macromol Res 5:357–362CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. G. Gunasekaran
    • 1
  • K. Rajakumar
    • 1
  • M. Alagar
    • 2
  • M. Dharmendirakumar
    • 1
  1. 1.Department of Applied Science and TechnologyAnna UniversityChennaiIndia
  2. 2.Department of Chemical EngineeringAnna UniversityChennaiIndia

Personalised recommendations