Journal of Polymer Research

, 21:329 | Cite as

Electrospun PLGA/multi-walled carbon nanotubes/wool keratin composite membranes: morphological, mechanical, and thermal properties, and their bioactivities in vitro

  • Hua-Lin Zhang
  • Juan Wang
  • Na Yu
  • Jin-Song Liu
Original Paper


In this work, PLGA, multi-walled carbon nanotubes (MWNTs), and wool keratin were successfully electrospun to generate a series of PLGA/MWNTs/wool keratin membranes. The morphologies, structures, mechanical properties, thermal properties, and bioactivities of the resulting hybrid fibers were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA), tensile testing, and X-ray diffraction (XRD). The TEM results confirmed that the MWNTs and wool keratin particles were effectively incorporated into the composite fibers. The mechanical properties of the composites were significantly enhanced by the addition of the MWNTs. The PLGA/MWNTs/2.0 % wool keratin composite presented the best values of ultimate strength, elongation at break, and Young’s modulus. All of the PLGA/MWNTs/wool keratin composites showed high thermal and thermooxidative stabilities. After mineralization, apatite crystals were deposited on the PLGA/MWNTs/wool keratin membranes, suggesting that the composites possess high bioactivity. Thus, these new ternary PLGA/MWNTs/wool keratin membranes show great potential to meet the demand for GBR membranes.


Multi-walled carbon nanotubes Wool keratin Electrospinning GBR membrane 



This study was supported by the National Natural Science Foundation of China (grant numbers 81200818, 81360269, and 81371182), the Key Project of the Ministry of Education of China (grant number 211196), and the Scientific Research Foundation for Higher Education of Ningxia Province of China (grant number NGY2012058).


  1. 1.
    Nyman S, Lindhe J, Karring T, Rylander H (1982) New attachment following surgical treatment of human periodontal disease. J Clin Periodontol 9:290–296CrossRefGoogle Scholar
  2. 2.
    Saeed K, Park S-Y (2007) Preparation of multiwalled carbon nanotube/nylon-6 (MWNTs/nylon) nanocomposites by in-situ polymerization. J Appl Polym Sci 106:3729–3735CrossRefGoogle Scholar
  3. 3.
    Ayutsede J, Gandhi M, Sukigara S, Ye H, Hsu CM, Gogotsi Y, Ko F (2006) Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules 7:208–214Google Scholar
  4. 4.
    Chen D, Liu TX, Zhou XP, Chauhari Tjiu WW, Hou HQ (2009) Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. J Phys Chem B 113:9741–9748CrossRefGoogle Scholar
  5. 5.
    Zhang H (2011) Electrospun poly (lactic-co-glycolic acid)/multiwalled carbon nanotubes composite scaffolds for guided bone tissue regeneration. J Bioact Compat Pol 26:347–362Google Scholar
  6. 6.
    Ki CS, Gang EH, Um IC, Park YH (2007) Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J Membrane Sci 302:20–26CrossRefGoogle Scholar
  7. 7.
    Yamauchi K, Yamauchi A, Kusunoki T, Kohda A, Konishi Y (1996) Preparation of stable aqueous solution of keratins, and physicochemical and biodegradational properties of films. J Biomed Mater Res 31:439–444Google Scholar
  8. 8.
    Yamauchi K, Mniwa M, Mori T (1998) Cultivation of fibroblast cells on keratin-coated substrata. J Biomater Sci Polym Ed 9:259–270Google Scholar
  9. 9.
    Tanabe T, Okitsu N, Tachibana A, Yamauchi K (2002) Preparation and characterization of keratin-chitosan composite film. Biomaterials 23:817–825CrossRefGoogle Scholar
  10. 10.
    Yang X, Zhang H, Yuan XL, Cui SX (2009) Wool keratin: a novel building block for layer-by-layer self-assembly. J Colloid Interf Sci 336:756–760Google Scholar
  11. 11.
    Gousterova A, Braikova D, Goshev I, Christov P, Tishinov K, Vasileva-Tonkova E, Haertlé T, Nedkov P (2005) Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis. Lett Appl Microbiol 40:335–340CrossRefGoogle Scholar
  12. 12.
    Suwantong O, Pankongadisak P, Deachathai S, Supaphol P (2012) Electrospun poly(L-lactic acid) fiber mats containing a crude Garcinia cowa extract for wound dressing applications. J Polym Res 19:9896–9905Google Scholar
  13. 13.
    Ma C, Huang DL, Chen HC, Chen DL, Xiong ZC (2012) Preparation and characterization of electrospun poly(lactide-co-glycolide) membrane with different L-lactide and D-lactide ratios. J Polym Res 19:9803–9808Google Scholar
  14. 14.
    Varma HK, Yokogawa Y, Espinosa FF, Kawamoto Y, Nishizawa K, Nagata F, Kameyama T (1999) Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method. Biomaterials 20:879–884CrossRefGoogle Scholar
  15. 15.
    Zhang HL (2011) Effects of electrospinning parameters on morphology and diameter of electrospun PLGA/MWNTs fibers and cytocompatibility in vitro. J Bioact Compat Pol 26:590–606CrossRefGoogle Scholar
  16. 16.
    Wei K, Xia JH, Kim BS, Kim IS (2011) Multiwalled carbon nanotubes incorporated Bombyx mori silk nanofibers by electrospinning. J Polym Res 18:579–585Google Scholar
  17. 17.
    Saligheh O, Forouharshad M, Arasteh R, Eslami-Farsani R, Khajavi R, Yadollah Roudbari B (2013) The effect of multi-walled carbon nanotubes on morphology, crystallinity and mechanical properties of PBT/MWCNT composite nanofibers. J Polym Res 20:65–70CrossRefGoogle Scholar
  18. 18.
    Volpato FZ, Ramos SLF, Motta A, Migliaresi C (2011) Physical and in vitro biological evaluation of a PA 6/MWCNT electrospun composite for biomedical applications. J Bioact Compat Polym 26:35–47CrossRefGoogle Scholar
  19. 19.
    Han CT, Chi M, Zheng YY, Jiang LX, Xiong CD, Zhang LF (2013) Mechanical properties and bioactivity of high-performance poly(etheretherketone)/carbon nanotubes/bioactive glass biomaterials. J Polym Res 20:203–210CrossRefGoogle Scholar
  20. 20.
    Lin CL, Wang YF, Lai YQ, Yang W, Jiao F, Zhang HG, Ye S, Zhang Q (2011) Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering. Colloids Surf B Biointerfaces 83:367–375CrossRefGoogle Scholar
  21. 21.
    Um IC, Kweon HY, Park YH, Hudson S (2001) Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int J Biol Macromol 29:91–97CrossRefGoogle Scholar
  22. 22.
    Jakobsen RJ, Brown LL, Hutson TB, Fink DJ, Veis A (1983) Intermolecular interactions in collagen self assembly as revealed by Fourier transform infrared spectroscopy. Science 220:1288–1290Google Scholar
  23. 23.
    Linde A (1995) Dentin mineralization and the role of odontoblasts in calcium transport. Connect Tissue Res 33:163–170CrossRefGoogle Scholar
  24. 24.
    Zhang HL, Liu JS, Yao ZW, Yang J, Pan LZ, Chen ZQ (2009) Biomimetic mineralization of electrospun poly(lactic-co-glycolic acid)/multi-walled carbon nanotubes composite scaffolds in vitro. Mater Lett 63:2313–2316Google Scholar
  25. 25.
    Varma HK, Yokogawa Y, Espinosa FF, Kawamoto Y, Nishizawa K, Nagata F, Kameyama T (1999) In-vitro calcium phosphate growth over functionalized cotton fibers. J Mater Sci Mater Med 10:395–400CrossRefGoogle Scholar
  26. 26.
    Heuer AH, Fink DJ, Laraia VJ, Arias JL, Calvert PD, Kendall K, Messing GL, Blackwell J, Rieke PC, Thompson DH (1992) Innovative materials processing strategies: a biomimetic approach. Science 255:1098–1105Google Scholar
  27. 27.
    Kokubo T, Kim HM, Kawashita M, Nakamura T (2001) Process of calcification on artificial materials. Z Kardiol 90(Suppl 3):86–91Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.College of StomatologyNingxia Medical UniversityYinchuanChina
  2. 2.Department of Prosthodontics, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina

Personalised recommendations