Advertisement

Journal of Polymer Research

, 20:324 | Cite as

Polymer electrolyte nanocomposites with transition metal oxides’ nanoparticles

  • Puja Diwan
  • Amita Chandra
Original Paper

Abstract

Polymer electrolytes nanocomposites based on polyethylene oxide complexed with ammonium iodide and dispersed transition metal oxides (TMOs) nanoparticles have been prepared by the solution cast method. The electrical and magnetic properties of the composites have been investigated by impedance spectroscopy and vibrating sample magnetometer (VSM), respectively. The variation between the applied magnetic field intensity and the magnetization of the material (M-H curve) reveals that the iron oxide particles as well as their composites show superparamagnetic behaviour at room temperature. These iron oxide dispersed composites have a potential to be used as medium field magnetic sensors.

Keywords

Polymer electrolyte Transition metal oxides Impedance spectroscopy VSM 

Notes

Acknowledgments

Authors gratefully acknowledge the financial support received from the University Grants Commission (for research fellowship), DST & University of Delhi (for grant of funds) and USIC, Delhi University (for providing experimental facilities).

References

  1. 1.
    Amara D, Margel S (2012) Synthesis and characterization of superparamagnetic core-shell micrometresized particles of narrow size distribution by a swelling process. J Mater Chem 22:9268–9276CrossRefGoogle Scholar
  2. 2.
    Bunde A, Dieterich W, Roman HE (1985) Dispersed ionic Conductors and percolation theory. Phys Rev Lett 55:5–8CrossRefGoogle Scholar
  3. 3.
    Byrne MT, Gun’ko YK (2010) Adv Mater 22:1672CrossRefGoogle Scholar
  4. 4.
    Cai M, Shen W, Rogers JD (2006) Nickel oxide nanoparticles as catalyst precursor for hydrogen production, US patent 7, 470, 647 B2Google Scholar
  5. 5.
    Capiglia C, Mustarelli P, Quartarone E, Tomasi C, Magistris A (1999) Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ionics 118:73–79CrossRefGoogle Scholar
  6. 6.
    Capiglia C, Yang J, Imanishi N, Hirano A, Takeda Y, Yamamto O (2002) Composite polymer electrolyte: the role of filler grain size. Solid State Ionics 154–155:7–14CrossRefGoogle Scholar
  7. 7.
    Chandra A, Singh PK, Chandra S (2002) Semiconductor-dispersed polymer electrolyte composites. Solid State Ionics 154–155:15–20CrossRefGoogle Scholar
  8. 8.
    Choi BK, Kim YW, Kyoung-Hee S (1977) Effects of ceramic fillers on the electrical properties of (PEO)16LiClO4 electrolytes. J Power Sources 68:357–360CrossRefGoogle Scholar
  9. 9.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458CrossRefGoogle Scholar
  10. 10.
    Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the Ceramaic fillers in enhancing the transport properties of composiye polymer electrolytes. Electrochim Acta 46:2457–2461CrossRefGoogle Scholar
  11. 11.
    Das SK, Mandal SS, Bhattacharyya AJ (2011) Energy Env Sci 4:1391CrossRefGoogle Scholar
  12. 12.
    Dissanayake MAKL, Jayathilaka PARD, Bokalawala RSP, Albinsson I, Mellander BE (2003) Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9 LiCF3SO3:Al2O3 composite polymer electrolyte. J Power Sources 119–121:409–414CrossRefGoogle Scholar
  13. 13.
    Hammond C (1997) The basics of Crystallography and diffraction. Oxford University Press, OxfordGoogle Scholar
  14. 14.
    Kumar B, Scanlon LG (1999) Polymer-ceramic composite electrolytes: conductivity and thermal history effects. Solid State Ionics 124:239–254CrossRefGoogle Scholar
  15. 15.
    Lei S, Kaibin T, Zhen F, Huagui Z (2006) Ultrasonic-assisted synthesis of colloidal Mn3O4 nanoparticles at normal temperature and pressure. Cryst Growth Des 6(8):1757–1760CrossRefGoogle Scholar
  16. 16.
    Ota T, Fukushima M, Ishigure Y, Unuma H, Takahashi M, Hikichi Y, Suzuki H (1997) Control of percolation curve by filler particle shape in Cu-SBR composites. J Mater Sci Lett 16:1182–1183Google Scholar
  17. 17.
    Pandey KKM, Gaur N, Bhatia CS (2011) Interface mediated control of microstructure and magnetic properties of FePt-C thin films. J Magn Magn Mater 323:2658–2662CrossRefGoogle Scholar
  18. 18.
    Pandey K, Dwivedi MM, Singh M, Agrawal SL (2010) Studies of dielectric relaxation and a.c. conductivity in [(100-x)PEO + xNH4SCN]: Al-Zn ferrite nano composite polymer electrolyte. J Polym Res 17:127–133CrossRefGoogle Scholar
  19. 19.
    Racuciu M, Creanga DE, Calugaru G (2005) Synthesis and rheological properties of an aqueous ferrofluid. J Optoelectron Adv Materi 7:2859–2864Google Scholar
  20. 20.
    Salehizadeh H, Hekmatian E, Sadeghi M, Kennedy K (2012) Synthesis and characterization of core-shell Fe3O4-gold-chitosan nanostructure. J Nanobiotechnology 10:3–7CrossRefGoogle Scholar
  21. 21.
    Singh PK, Chandra S, Chandra A (2002) Polymer electrolyte composites with dispersed semiconductors. J Mat Sci Lett 21:1393–1395CrossRefGoogle Scholar
  22. 22.
    Tan CG, Siew WO, Pang WL, Osman Z, Chew KW (2007) The effects of ceramic fillers on the PMMA-based polymer electrolye systems. Ionics 13:361–364CrossRefGoogle Scholar
  23. 23.
    Wieczorek W, Stevens JR, Florjanczyk Z (1996) Composite polyether based solid electrolytes. The Lewis acid-base approach. Solid State Ionics 85:67–72CrossRefGoogle Scholar
  24. 24.
    Yang H, Hu Y, Zhang X, Qiu G (2004) Michrochemical synthesis of cobalt oxide nanoparticle. Mater Lett 58:387–389CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia

Personalised recommendations