Journal of Polymer Research

, 20:306 | Cite as

Self-assembly of multiwall carbon nanotubes on sulfonated poly (arylene ether ketone) as a proton exchange membrane

Original Paper


Membranes of sulfonated poly (arylene ether ketone) containing carboxyl groups (SPAEK-C) are modified by alternating deposition of oppositely charged polyelectrolytes [carboxyl-functionalized multiwalled carbon nanotubes (C-MWCNTs) and chitosan (CS)] in order to reduce methanol crossover and maintain high proton conductivity in a direct methanol fuel cell (DMFC). Fourier transform infrared spectroscopy confirms that C-MWCNTs and CS are assembled in the multilayers. The morphology of membranes is studied by scanning electron microscopy. The results confirm the presence of thin C-MWCNTs/CS multilayers coated on the SPAEK-C membrane. The SPAEK-C-(C-MWCNTs/CS)n membranes maintain high proton conductivity values up to 0.058 Scm−1 at 25 °C and 0.24 Scm−1 at 80 °C, which are superior to previous layer-by-layer assembled polyelectrolyte systems. Meanwhile, the methanol permeability of these modified membranes is effectively reduced. The selectivity of SPAEK-C-(C-MWCNTs/CS)n is two orders of magnitude greater than that of Nafion® 117, making these modified membranes a good alternative to be used in DMFCs. The thermal stability, water uptake, swelling ratio and proton conductivity of SPAEK-C and SPAEK-C-(C-MWCNTs/CS)n membranes are also investigated.


Sulfonated poly (arylene ether ketone) Proton exchange membrane Carbon nanotubes Methanol permeability 



This work was supported by the National Nature Science Foundation of China (Grant No. 21104022) and Jilin University Basic Research Founding (No: 450060481017).


  1. 1.
    Costamagna P, Srinivasan S (2001) J Power Sources 102:253–269CrossRefGoogle Scholar
  2. 2.
    Wang Z, Chang H, Ni HZ, Wu QH, Zhang MY, Zhang HX (2011) J Appl Polym Sci 120:914–920CrossRefGoogle Scholar
  3. 3.
    Alberti G, Casciola M (2003) Annu Rev Mater Res 33:129–136CrossRefGoogle Scholar
  4. 4.
    Arico AS, Srinivasan S, Antonucci V (2001) Fuel Cells 1:133–161CrossRefGoogle Scholar
  5. 5.
    Qiao J, Hamaya T, Okada T (2005) Polymer 46:10809–10816CrossRefGoogle Scholar
  6. 6.
    Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Chem Rev 104:4587–4612CrossRefGoogle Scholar
  7. 7.
    Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Kaliaguine S (2005) Polymer 46:3257–3263CrossRefGoogle Scholar
  8. 8.
    Kim YS, Wang F, Hickner M, Zawodzinski TA, McGrath JE (2003) J Membr Sci 212:263–282CrossRefGoogle Scholar
  9. 9.
    Lin YH, Li HD, Liu CP, Xing W, Ji XL (2008) J Power Sources 185:904–908CrossRefGoogle Scholar
  10. 10.
    Nunes SP, Ruffmann B, Rikowski E, Vetter S, Richau K (2002) J Membr Sci 203:215–225CrossRefGoogle Scholar
  11. 11.
    Wang Z, Ren CL, Ni HZ, Gao HC, Chen HL, Xu JM, Zhang HX (2013) J Polym Res 20:108CrossRefGoogle Scholar
  12. 12.
    Chang JH, Park JH, Park GG, Kim CS, Park OO (2003) J Power Sources 124:18–25CrossRefGoogle Scholar
  13. 13.
    Huang SCJ, Artyukhin AB, Misra N, Martinez JA, Stroeve PA, Grigoropoulos CP, Ju JWW, Noy A (2010) Nano Lett 10:1812–1816CrossRefGoogle Scholar
  14. 14.
    Ajayan PM (1999) Chem Rev 99:1787–1800CrossRefGoogle Scholar
  15. 15.
    Sabzi RE, Rezapour K, Samadi N (2010) J Serb Chem Soc 75:537–549CrossRefGoogle Scholar
  16. 16.
    Holzinger M, Vostrowsky O, Hirsh A, Hennrich F, Kappes M, Weiss R, Jellen F (2001) Angew Chem Int Ed 40:4002–4005CrossRefGoogle Scholar
  17. 17.
    Zhu J, Yudasaka M, Zhang M, Kasuya D, Iijima S (2003) Nano Lett 3:1239–1243CrossRefGoogle Scholar
  18. 18.
    Riggs JE, Guo Z, Carroll DL, Sun YP (2000) J Am Chem Soc 122:5879–5880CrossRefGoogle Scholar
  19. 19.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136CrossRefGoogle Scholar
  20. 20.
    Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE (2003) Nano Lett 3:1379–1382CrossRefGoogle Scholar
  21. 21.
    O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Science 297:593–596CrossRefGoogle Scholar
  22. 22.
    Yurekli K, Mitchell CA, Krishnamoorti R (2004) J Am Chem Soc 126:9902–9903CrossRefGoogle Scholar
  23. 23.
    Matarredona O, Rhoads H, Li Z, Harwell JH, Balzano L, Resasco DE (2003) J Phys Chem B 107:13357–13367CrossRefGoogle Scholar
  24. 24.
    Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Science 298:2361–2366CrossRefGoogle Scholar
  25. 25.
    Li NW, Zhang F, Wang JH, Li SH, Zhang SB (2009) Polymer 50:3600–3608CrossRefGoogle Scholar
  26. 26.
    Shim BS, Starkovich J, Kotov N (2006) Compos Sci Technol 6:1174–1181CrossRefGoogle Scholar
  27. 27.
    Landi BJ, Raffaelle RP, Heben MJ, Alleman JL, VanDerveer W, Gennett T (2002) Nano Lett 2:1329–1332CrossRefGoogle Scholar
  28. 28.
    Wang J, Musameh M, Lin Y (2003) J Am Chem Soc 125:2408–2409CrossRefGoogle Scholar
  29. 29.
    Lin HD, Zhao CJ, Cui ZM, Ma WJ, Fu TZ, Na H, Xing W (2009) J Power Sources 193:507–514CrossRefGoogle Scholar
  30. 30.
    Decher G (1997) Science 277:1232–1237CrossRefGoogle Scholar
  31. 31.
    Lin HD, Zhao CJ, Ma WJ, Li HT, Na H (2009) Int J Hydrog Energy 34:9795–9801CrossRefGoogle Scholar
  32. 32.
    Chen WF, Wu JS, Kuo PL (2008) Chem Mater 20:5756–5767CrossRefGoogle Scholar
  33. 33.
    Hu NT, Dang GD, Zhou HW, Jing J, Chen CH (2007) Mater Lett 61:5285–5287CrossRefGoogle Scholar
  34. 34.
    Thomassin JM, Kollar J, Caldarella G, Germain A, Jérôme R, Detrembleur C (2007) J Membr Sci 303:252–257CrossRefGoogle Scholar
  35. 35.
    Liu YH, Yi B, Shao ZG, Xing D, Zhang H (2006) Solid State Lett 9:A356–359CrossRefGoogle Scholar
  36. 36.
    Yılmaztürk S, Deligöz H, Yılmazo˘glu M, Damyan H, Öksüzömer F, Koc SN, Durmus A, Gürkaynak MA (2010) J Power Sources 195:703–709CrossRefGoogle Scholar
  37. 37.
    Pivovar BS, Wang YX, Cussler EL (1999) J Membr Sci 154:155–162CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Alan G. MacDiarmid InstituteCollege of Chemistry, Jilin UniversityChangchunPeople’s Republic of China
  2. 2.Jilin Electric Power Research InstituteChangchunPeople’s Republic of China

Personalised recommendations