Journal of Polymer Research

, 20:290 | Cite as

Preparation of nanocellular foams from polycarbonate/poly(lactic acid) blend by using supercritical carbon dioxide

  • Daofei Bao
  • Xia Liao
  • Ting He
  • Qi Yang
  • Guangxian Li
Original Paper


Polymer foams with nanoscale cell structure were prepared from polycarbonate (PC)/poly (lactic acid) (PLA) blends. The immiscible blends with PLA as the dispersed phase were foamed through using batch foaming process and CO2 as the physical foaming agent. Nanoscale cells emerged in both PLA domain and PC matrix of blend with 25 wt.% PLA content under an appropriate foaming condition. In the PLA domain, the formation of nanoscale pores was related to the confined foaming, blend and the crystallinity of PLA component. A transition from closed nanoscale cells to open nanoscale cells emerging in the PLA domain was in connection with the foaming condition. In the PC matrix, the cell property of the nanoscale cells was affected by the PLA phase. Moreover, the average cell sizes of nanocellular foams of both phases could be controlled within 40–130 nm by manipulating the size of PLA domain and saturation pressure.


Supercritical carbon dioxide Nanocellular foam Polycarbonate Poly(lactic acid) Blend 



This project is supported by the National Natural Science Foundation of China (No. 51103091 and 51121001), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (No.20101174-4-3) from the State Education Ministry, and Chengdu City Bureau of Technology, China (No.11DXYB336JH).


  1. 1.
    Cooper AI (2003) Adv Mater 15:1049–1059CrossRefGoogle Scholar
  2. 2.
    Yoon JD, Cha SW (2001) Polym Test 20:287–293CrossRefGoogle Scholar
  3. 3.
    Baldwin DF, Park CB, Suh NP (1996) Part I: microcell nucleation. Polym Eng Sci 36:1437–1445CrossRefGoogle Scholar
  4. 4.
    Baldwin DF, Park CB, Suh NP (1996) Polym Eng Sci 36:1446–1453CrossRefGoogle Scholar
  5. 5.
    Baldwin DF, Park CB, Suh NP (1996) Polym Eng Sci 36:1425–1435CrossRefGoogle Scholar
  6. 6.
    Doroudiani S, Park CB, Kortschot MT (1998) Polym Eng Sci 38:1205–1215CrossRefGoogle Scholar
  7. 7.
    Rachtanapun P, Selke S, Matuana L (2004) J Appl Polym Sci 93:364–371CrossRefGoogle Scholar
  8. 8.
    Schmidt D, Raman VI, Egger C, du Fresne C, Schädler V (2007) Mater Sci Eng C 27:1487–1490CrossRefGoogle Scholar
  9. 9.
    Sharudin RWB, Ohshima M (2011) Macromol Mater Eng 296:1046–1054CrossRefGoogle Scholar
  10. 10.
    Fujimoto Y, Ray SS, Okamoto M, Ogami A, Yamada K, Ueda K (2003) Macromol Rapid Commun 24:457–461CrossRefGoogle Scholar
  11. 11.
    Yang J, Huang L, Li L, Zhang Y, Chen F, Zhong M (2013) J Polym Res 20:1–9Google Scholar
  12. 12.
    Yokoyama H, Sugiyama K (2005) Macromolecules 38:10516–10522CrossRefGoogle Scholar
  13. 13.
    Taki K, Waratani Y, Ohshima M (2008) Macromol Mater Eng 293:589–597CrossRefGoogle Scholar
  14. 14.
    Reglero Ruiz JA, Dumon M, Pinto J, Rodriguez–Pérez MA (2011) Macromol Mater Eng 296:752–759CrossRefGoogle Scholar
  15. 15.
    Otsuka T, Taki K, Ohshima M (2008) Macromol Mater Eng 293:78–82CrossRefGoogle Scholar
  16. 16.
    Sharudin RW, Nabil A, Taki K, Ohshima M (2011) J Appl Polym Sci 119:1042–1051CrossRefGoogle Scholar
  17. 17.
    Nemoto T, Takagi J, Ohshima M (2008) Macromol Mater Eng 293:574–580CrossRefGoogle Scholar
  18. 18.
    Nemoto T, Takagi J, Ohshima M (2008) Macromol Mater Eng 293:991–998CrossRefGoogle Scholar
  19. 19.
    Nemoto T, Takagi J, Ohshima M (2010) Polym Eng Sci 50:2408–2416CrossRefGoogle Scholar
  20. 20.
    Fischer E, Sterzel HJ, Wegner G (1973) Colloid Polym Sci 251:980–990Google Scholar
  21. 21.
    Mercier J, Legras R (1970) J Polym Sci B Polym Lett 9:645–650CrossRefGoogle Scholar
  22. 22.
    Calvão PS, Yee M, Demarquette NR (2005) Polymer 46:2610–2620CrossRefGoogle Scholar
  23. 23.
    Tol R, Mathot V, Groeninckx G (2005) Polymer 46:369–382CrossRefGoogle Scholar
  24. 24.
    Li D, Liu T, Zhao L, Lian X, Yuan W (2011) Ind Eng Chem Res 50:1997–2007CrossRefGoogle Scholar
  25. 25.
    Takada M, Hasegawa S, Ohshima M (2004) Polym Eng Sci 44:186–196CrossRefGoogle Scholar
  26. 26.
    Gross SM, Roberts GW, Kiserow DJ, DeSimone JM (2000) Macromolecules 33:40–45CrossRefGoogle Scholar
  27. 27.
    Liao X, Nawaby AV, Whitfield PS (2010) Polym Int 59:1709–1718CrossRefGoogle Scholar
  28. 28.
    Liao R, Yu W, Zhou C (2010) Polymer 51:6334–6345CrossRefGoogle Scholar
  29. 29.
    Taki K, Kitano D, Ohshima M (2011) Ind Eng Chem Res 50:3247–3252CrossRefGoogle Scholar
  30. 30.
    Liao X, Nawaby AV (2012) J Polym Res 19:1–9CrossRefGoogle Scholar
  31. 31.
    Wu D, Zhang J, Zhang M, Zhou W, Lin D (2011) Colloid Polym Sci 289:1683–1694CrossRefGoogle Scholar
  32. 32.
    Krause B, Diekmann K, van der Vegt NFA, Wessling M (2002) Macromolecules 35:1738–1745CrossRefGoogle Scholar
  33. 33.
    Yang Y, Zhang H, Zheng W (2010) Plast Technol Eng 49:1214–1222CrossRefGoogle Scholar
  34. 34.
    Reignier J, Tatibouët J, Gendron R (2009) J Appl Polym Sci 112:1345–1355CrossRefGoogle Scholar
  35. 35.
    Yokoyama BH, Li L, Nemoto T, Sugiyama K (2004) Adv Mater 16:1542–1546CrossRefGoogle Scholar
  36. 36.
    Zhang Z, Handa YP (1998) J Polym Sci B Polym Phys 36:977–982CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduChina

Personalised recommendations