Skip to main content
Log in

Relaxation behavior of poly(trimethylene 2,6-naphthalate) in nanoclay confinement

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The relaxation behavior of poly(trimethylene 2,6-naphthalate)/nanoclay composites is investigated using differential scanning calorimetry (DSC) and dynamic mechanical analyzer (DMA). The incorporation of two different types of nanoclays in the PTN matrix intercalated the PTN chains in the narrow space of clay intergalleries and constrained the polymer chains in the vicinity of nanoclay layers. Despite the presence of constrained region, the glass transition temperature of the PTN/nanoclay composite is decreased as compared to neat PTN. Moreover, the activation energy of the PTN is reduced and the relaxation rate of PTN becomes faster in the presence of nanoclays. The enhanced relaxation dynamics of PTN chains at Tg depends on the evolution of local free volume owing to the confining effect of chain intercalation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  2. Usuki A, Hasegawa N, Kato M (2005) Adv Polym Sci 179:135–195

    Article  CAS  Google Scholar 

  3. Shah D, Maiti P, Jiang DD, Batt CA, Giannelis EP (2005) Adv Mater 17:525–528

    Article  CAS  Google Scholar 

  4. Fornes TD, Hunter DL, Paul DR (2004) Macromolecules 37:1793–1798

    Article  CAS  Google Scholar 

  5. Bousmina M (2006) Macromolecules 39:4259–4263

    Article  CAS  Google Scholar 

  6. Bandi S, Schiraldi DA (2006) Macromolecules 39:6537–6545

    Article  CAS  Google Scholar 

  7. Rao Y, Pochan JM (2007) Macromolecules 40:290–296

    Article  CAS  Google Scholar 

  8. Oh H, Green PF (2009) Nat Mater 8:139–143

    Article  CAS  Google Scholar 

  9. Lu H, Nutt S (2003) Macromolecules 36:4010–4016

    Article  CAS  Google Scholar 

  10. Tran TA, Said S, Grohens Y (2005) Macromolecules 38:3867–3871

    Article  CAS  Google Scholar 

  11. Kuppa V, Foley TMD, Manias E (2003) Eur Phys J E 12:159–165

    Article  CAS  Google Scholar 

  12. Chen K, Wilkie CA, Vyazovkin S (2007) J Phys Chem B 111:12685–12692

    Article  CAS  Google Scholar 

  13. Donth E (2001) The glass transition, relaxation dynamics in liquids and disordered materials. Springer series in materials science. Springer, New York

    Google Scholar 

  14. Bohning M, Goering H, Fritz A, Brzezinka KW, Turky G, Schonhals A (2005) Macromolecules 38:2764–2774

    Article  Google Scholar 

  15. Srivastava S, Basu JK (2007) Phys Rev Lett 98:165701–165704

    Article  CAS  Google Scholar 

  16. Li Y, Ishida H (2005) Macromolecules 38:6513–6519

    Article  CAS  Google Scholar 

  17. Ash BJ, Siegel RW, Schadler LS (2004) J Polym Sci B Polym Phys 42:4371–4383

    Article  CAS  Google Scholar 

  18. Lee KM, Han CD (2003) Polymer 44:4573–4588

    Article  CAS  Google Scholar 

  19. Dai XH, Xu J, Guo XL, Lu YL, Shen DY, Zhao N, Luo XD, Zhang XL (2004) Macromolecules 37:5615–5623

    Article  CAS  Google Scholar 

  20. Liu ZS, Erhan SZ, Xu JY (2005) Polymer 46:10119–10127

    Article  CAS  Google Scholar 

  21. Krishnamoorti R, Vaia RA, Giannelis EP (1996) Chem Mater 8:1728–1734

    Article  CAS  Google Scholar 

  22. Park J, Jana SC (2004) Polymer 45:7673–7679

    Article  CAS  Google Scholar 

  23. Vyazovkin S, Dranca I (2004) J Phys Chem B 108:11981–11987

    Article  CAS  Google Scholar 

  24. Chen HW, Chiu CY, Chang FC (2002) J Polym Sci B Polym Phys 40:1342–1353

    Article  CAS  Google Scholar 

  25. Jeong YG, Jo WH, Lee SC (2004) Polymer 45:379–384

    Article  CAS  Google Scholar 

  26. Liang Y, Lee HS (2005) Macromolecules 38:9885–9888

    Article  CAS  Google Scholar 

  27. Chuang WT, Hong PD, Chen CH, Sheu HS, Jeng US (2007) J Appl Crystallogr 40:s637–s641

    Article  CAS  Google Scholar 

  28. Khan AN (2011) Physics of polymer/clay nanocomposites. Lambert academic publishing, ISBN: 978-3-8383-9864-8

  29. Khan AN, Hong PD, Chuang WT, Shih KS (2009) Polymer 50:6287–6296

    Article  CAS  Google Scholar 

  30. Khan AN, Hong PD, Chuang WT, Shih KS (2010) Mater Chem Phys 119:93–99

    Article  CAS  Google Scholar 

  31. Ferry JD (1980) Viscoelastic properties of polymers. John Wiley & Sons, New York

    Google Scholar 

  32. Vogel H (1921) Phys Z 22:645

    CAS  Google Scholar 

  33. Fulcher GS (1923) J Am Ceram Soc 8:339

    Article  Google Scholar 

  34. Tammann G, Hesse WZ (1926) Anorg Allg Chem 156:245

    Article  Google Scholar 

  35. Zhang X, Loo LS (2008) J Polym Sci B Polym Phys 46:2605–2617

    Article  CAS  Google Scholar 

  36. Jang BN, Wang D, Wilkie CA (2005) Macromolecules 38:6533–6543

    Article  CAS  Google Scholar 

  37. Zhang X, Loo LS (2009) Macromolecules 42:5196–5207

    Article  CAS  Google Scholar 

  38. Grady BP, Paul A, Peters JE, Ford WT (2009) Macromolecules 42:6152–6158

    Article  CAS  Google Scholar 

  39. Wilkinson AN, Man Z, Stanford JL, Matikainen P, Clements ML, Less GC, Liauw CM (2006) Macromol Mater Eng 291:917–928

    Article  CAS  Google Scholar 

  40. Mijovic J, Hyungki L, Kenny J, Mays J (2006) Macromolecules 39:2172–2182

    Article  CAS  Google Scholar 

  41. Cho YK, Watanabe H, Granick S (1999) J Chem Phys 110:9688–9697

    Article  CAS  Google Scholar 

  42. Swenson J, Schwartz GA, Gergman R, Howells WS (2003) Eur Phys J E 12:179–183

    Article  CAS  Google Scholar 

  43. Aoyagi T, Takimoto J, Doi M (2001) J Chem Phys 115:552–560

    Article  CAS  Google Scholar 

  44. Sy JW, Mijovic J (2000) Macromolecules 33:933–946

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Nawaz Khan or Po-Da Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A.N., Hong, PD. & Chaung, WT. Relaxation behavior of poly(trimethylene 2,6-naphthalate) in nanoclay confinement. J Polym Res 20, 280 (2013). https://doi.org/10.1007/s10965-013-0280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0280-8

Keywords

Navigation