Advertisement

Journal of Polymer Research

, 20:280 | Cite as

Relaxation behavior of poly(trimethylene 2,6-naphthalate) in nanoclay confinement

  • Ahmad Nawaz Khan
  • Po-Da Hong
  • Wei-Tsung Chaung
Original Paper

Abstract

The relaxation behavior of poly(trimethylene 2,6-naphthalate)/nanoclay composites is investigated using differential scanning calorimetry (DSC) and dynamic mechanical analyzer (DMA). The incorporation of two different types of nanoclays in the PTN matrix intercalated the PTN chains in the narrow space of clay intergalleries and constrained the polymer chains in the vicinity of nanoclay layers. Despite the presence of constrained region, the glass transition temperature of the PTN/nanoclay composite is decreased as compared to neat PTN. Moreover, the activation energy of the PTN is reduced and the relaxation rate of PTN becomes faster in the presence of nanoclays. The enhanced relaxation dynamics of PTN chains at Tg depends on the evolution of local free volume owing to the confining effect of chain intercalation.

Keywords

Nanocomposites Polytrimethylene 2 6-naphthalate Relaxation dynamics 

References

  1. 1.
    Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  2. 2.
    Usuki A, Hasegawa N, Kato M (2005) Adv Polym Sci 179:135–195CrossRefGoogle Scholar
  3. 3.
    Shah D, Maiti P, Jiang DD, Batt CA, Giannelis EP (2005) Adv Mater 17:525–528CrossRefGoogle Scholar
  4. 4.
    Fornes TD, Hunter DL, Paul DR (2004) Macromolecules 37:1793–1798CrossRefGoogle Scholar
  5. 5.
    Bousmina M (2006) Macromolecules 39:4259–4263CrossRefGoogle Scholar
  6. 6.
    Bandi S, Schiraldi DA (2006) Macromolecules 39:6537–6545CrossRefGoogle Scholar
  7. 7.
    Rao Y, Pochan JM (2007) Macromolecules 40:290–296CrossRefGoogle Scholar
  8. 8.
    Oh H, Green PF (2009) Nat Mater 8:139–143CrossRefGoogle Scholar
  9. 9.
    Lu H, Nutt S (2003) Macromolecules 36:4010–4016CrossRefGoogle Scholar
  10. 10.
    Tran TA, Said S, Grohens Y (2005) Macromolecules 38:3867–3871CrossRefGoogle Scholar
  11. 11.
    Kuppa V, Foley TMD, Manias E (2003) Eur Phys J E 12:159–165CrossRefGoogle Scholar
  12. 12.
    Chen K, Wilkie CA, Vyazovkin S (2007) J Phys Chem B 111:12685–12692CrossRefGoogle Scholar
  13. 13.
    Donth E (2001) The glass transition, relaxation dynamics in liquids and disordered materials. Springer series in materials science. Springer, New YorkGoogle Scholar
  14. 14.
    Bohning M, Goering H, Fritz A, Brzezinka KW, Turky G, Schonhals A (2005) Macromolecules 38:2764–2774CrossRefGoogle Scholar
  15. 15.
    Srivastava S, Basu JK (2007) Phys Rev Lett 98:165701–165704CrossRefGoogle Scholar
  16. 16.
    Li Y, Ishida H (2005) Macromolecules 38:6513–6519CrossRefGoogle Scholar
  17. 17.
    Ash BJ, Siegel RW, Schadler LS (2004) J Polym Sci B Polym Phys 42:4371–4383CrossRefGoogle Scholar
  18. 18.
    Lee KM, Han CD (2003) Polymer 44:4573–4588CrossRefGoogle Scholar
  19. 19.
    Dai XH, Xu J, Guo XL, Lu YL, Shen DY, Zhao N, Luo XD, Zhang XL (2004) Macromolecules 37:5615–5623CrossRefGoogle Scholar
  20. 20.
    Liu ZS, Erhan SZ, Xu JY (2005) Polymer 46:10119–10127CrossRefGoogle Scholar
  21. 21.
    Krishnamoorti R, Vaia RA, Giannelis EP (1996) Chem Mater 8:1728–1734CrossRefGoogle Scholar
  22. 22.
    Park J, Jana SC (2004) Polymer 45:7673–7679CrossRefGoogle Scholar
  23. 23.
    Vyazovkin S, Dranca I (2004) J Phys Chem B 108:11981–11987CrossRefGoogle Scholar
  24. 24.
    Chen HW, Chiu CY, Chang FC (2002) J Polym Sci B Polym Phys 40:1342–1353CrossRefGoogle Scholar
  25. 25.
    Jeong YG, Jo WH, Lee SC (2004) Polymer 45:379–384CrossRefGoogle Scholar
  26. 26.
    Liang Y, Lee HS (2005) Macromolecules 38:9885–9888CrossRefGoogle Scholar
  27. 27.
    Chuang WT, Hong PD, Chen CH, Sheu HS, Jeng US (2007) J Appl Crystallogr 40:s637–s641CrossRefGoogle Scholar
  28. 28.
    Khan AN (2011) Physics of polymer/clay nanocomposites. Lambert academic publishing, ISBN: 978-3-8383-9864-8Google Scholar
  29. 29.
    Khan AN, Hong PD, Chuang WT, Shih KS (2009) Polymer 50:6287–6296CrossRefGoogle Scholar
  30. 30.
    Khan AN, Hong PD, Chuang WT, Shih KS (2010) Mater Chem Phys 119:93–99CrossRefGoogle Scholar
  31. 31.
    Ferry JD (1980) Viscoelastic properties of polymers. John Wiley & Sons, New YorkGoogle Scholar
  32. 32.
    Vogel H (1921) Phys Z 22:645Google Scholar
  33. 33.
    Fulcher GS (1923) J Am Ceram Soc 8:339CrossRefGoogle Scholar
  34. 34.
    Tammann G, Hesse WZ (1926) Anorg Allg Chem 156:245CrossRefGoogle Scholar
  35. 35.
    Zhang X, Loo LS (2008) J Polym Sci B Polym Phys 46:2605–2617CrossRefGoogle Scholar
  36. 36.
    Jang BN, Wang D, Wilkie CA (2005) Macromolecules 38:6533–6543CrossRefGoogle Scholar
  37. 37.
    Zhang X, Loo LS (2009) Macromolecules 42:5196–5207CrossRefGoogle Scholar
  38. 38.
    Grady BP, Paul A, Peters JE, Ford WT (2009) Macromolecules 42:6152–6158CrossRefGoogle Scholar
  39. 39.
    Wilkinson AN, Man Z, Stanford JL, Matikainen P, Clements ML, Less GC, Liauw CM (2006) Macromol Mater Eng 291:917–928CrossRefGoogle Scholar
  40. 40.
    Mijovic J, Hyungki L, Kenny J, Mays J (2006) Macromolecules 39:2172–2182CrossRefGoogle Scholar
  41. 41.
    Cho YK, Watanabe H, Granick S (1999) J Chem Phys 110:9688–9697CrossRefGoogle Scholar
  42. 42.
    Swenson J, Schwartz GA, Gergman R, Howells WS (2003) Eur Phys J E 12:179–183CrossRefGoogle Scholar
  43. 43.
    Aoyagi T, Takimoto J, Doi M (2001) J Chem Phys 115:552–560CrossRefGoogle Scholar
  44. 44.
    Sy JW, Mijovic J (2000) Macromolecules 33:933–946CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Chemical and Materials EngineeringNational University of Sciences and TechnologyIslamabadPakistan
  2. 2.Graduate Institute of Materials Science and TechnologyNational Taiwan University of Sciences and TechnologyTaipeiTaiwan
  3. 3.National Synchrotron Radiation Research CenterHsinchuTaiwan

Personalised recommendations