Skip to main content
Log in

Synthesis of poly (l-lactide) in supercritical carbon dioxide with PDMS based stabilizers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The dispersion polymerization of poly (L-lactide)(PLLA) in supercritical carbon dioxide (ScCO2) with stannous octoate (Sn(Oct)2) as a catalyst and n-butanol as an initiator was studied. An amphiphilic triblock copolymer was synthesized by the ring-opening polymerization ofε-caprolactone (ε-CL) with the hydroxylpropyl-terminated polydimethylsiloxane (HTPDMS) as the macromolecule initiator and then chosen as the stabilizer in the synthesis of PLLA. With the concentrations of 3 wt % (stabilizer/monomer), fine powder formed PLLAs were obtained. The effects of operating parameters such as pressure, temperature and stirring rate on the properties of the synthesized PLLAs were investigated. The results showed that the temperature had the greatest effect on the conversion and the stirring rate was the most important factor which determined the morphology of the products. An obvious increase of conversion was observed when the temperature increased from 80 °C to 100 °C. The influence of stirring rate on the morphology was achieved through the anchoring of the stabilizer with the growing polymer chains. The stirring rate of 300 rpm was turned out to be necessary and adequate. When the stirring rate increased or decreased out of the range of (300 ± 100)rpm, only agglomerates were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Duda A, Penczek S, Kowalski A, Libiszowski J (2000) Polymerizations of ε-Caprolactone and L, L-dilactide initiated with stannous octoate and stannous butoxide― a comparison. Macromol Symp 153:41–53

    Article  CAS  Google Scholar 

  2. Mazarro R, de Lucas A, Gracia I (2008) Copolymerization of D,L-lactide and glycolide in supercritical carbon dioxide with zinc octoate as catalyst. J Biomed Mater Res B Appl Biomater 85B:196–203

    Article  CAS  Google Scholar 

  3. Hile DD, Pishko MV (2001) Emulsion copolymerization of D,L-lactide and glycolide in supercritical carbon dioxide. J Polym Sci A Polym Chem 39:562–570

    Article  CAS  Google Scholar 

  4. Allcock HR, Chang J-Y (1991) Poly(organophosphazenes) with oligopeptides as side groups: prospective biomaterials. Macromolecules 24:993–999

    Article  CAS  Google Scholar 

  5. Grignard B, Stassin F, Calberg C, Jérôme R, Jérôme C (2008) Synthesis of biodegradable poly-ε-caprolactone microspheres by dispersion ring-opening polymerization in supercritical carbon dioxide. Biomacromolecules 9:3141–3149

    Article  CAS  Google Scholar 

  6. Mikos AG, Temenoff JS (2001) Injectable biodegradable materials for orthopedic tissue engineering. Electron J Biotechnol 21:114–119

    Google Scholar 

  7. Kricherdorf HR (2001) Syntheses and application of polylactides. Chemosphere 43:49–54

    Article  Google Scholar 

  8. de Rosario Mazarro A, Lucas LI, Cabezas (2010) Influence of the operative conditions on the characteristics of poly (D, L-lactide-co-glycolide) synthesized in supercritical carbon dioxide. Macromol Symp 287:111–118

    Article  Google Scholar 

  9. Stassin F, Halleux O, Jérôme R (2001) Ring-opening polymerization of ε-Caprolactone in supercritical carbon dioxide. Macromolecules 34:775–781

    Article  CAS  Google Scholar 

  10. Cabezas LI, Fernández V, Mazarro R (2012) Production of biodegradable porous scaffolds impregnated with Indomethacin in supercritical CO2. J Supercrit Fluids 63:155–160

    Article  CAS  Google Scholar 

  11. Minami H, Tanaka A, Kagawa Y (2012) Preparation of poly (acrylic acid)–b–polystyrene by two step atom transfer radical polymerization in supercritical carbon dioxide. J Polym Sci A Polym Chem 50:2578–2584

    Article  CAS  Google Scholar 

  12. Cooper AI (2000) Polymer synthesis and processing using supercritical carbon dioxide. J Mater Chem 10:207–234

    Article  CAS  Google Scholar 

  13. Bratton D, Brown M, Howdle SM (2003) Suspension polymerization ofl-Lactide in supercritical carbon dioxide in the presence of a triblock copolymer stabilizer. Macromolecules 36:5908–5911

    Article  CAS  Google Scholar 

  14. Ganapathy HS, Hwang HS, Jeong YT (2007) Ring-opening polymerization of L-lactide in supercritical carbon dioxide using PDMS based stabilizers. Eur Polym J 43:119–126

    Article  CAS  Google Scholar 

  15. Yılmaz M, Eğri S, Yıldız N et al (2011) Dispersion polymerization of L-lactide in supercritical carbon dioxide. J Polym Res 18:975–982

    Article  Google Scholar 

  16. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104:6147–6176

    Article  CAS  Google Scholar 

  17. Xu Z, Zheng S (2007) Morphology and thermomechanical properties of nanostructured thermosetting blends of epoxy resin and poly(ɛ-caprolactone)-block-polydimethylsiloxane-block-poly(ɛ-caprolactone)triblock copolymer. Polymer 48:6134–6144

    Article  CAS  Google Scholar 

  18. Zhang XY, Li QF (2004) Investigation of stabilizer-free dispersion polymerization process of styrene and maleic anhydride copolymer microspheres. Scientific experimental methods of polymers. Chemical Industry Press, Beijing

    Google Scholar 

  19. Witzke DR, Narayan R (1997) Reversible kinetics and thermodynamics of the homopolymerization of L-Lactide with 2-Ethylhexanoic acid Tin(II)Salt. Macromolecules 30:7075–7085

    Article  CAS  Google Scholar 

  20. Bratton D, Brown M, Howdle SM (2005) Novel fluorinated stabilizers for ring-opening polymerization in supercritical carbon dioxide. J Polym Sci A Polym Chem 43:6573–6585

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are much indebted to the Natural Science foundation of China (Project Nos. 21176032) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Zhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Zhan, S., Zhao, Q. et al. Synthesis of poly (l-lactide) in supercritical carbon dioxide with PDMS based stabilizers. J Polym Res 20, 275 (2013). https://doi.org/10.1007/s10965-013-0275-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0275-5

Keywords

Navigation