Journal of Polymer Research

, 20:266 | Cite as

Effect of additives on the morphology evolution of EPDM/PP TPVs during dynamic vulcanization in a twin-screw extruder

  • Hanguang Wu
  • Nanying Ning
  • Liqun Zhang
  • Hongchi Tian
  • Youping Wu
  • Ming Tian
Original Paper


Ethylene-Propylene-Diene Monomer/Polypropylene thermoplastic vulcanizates (EPDM/PP TPVs) have been widely used as a kind of typical “green” elastomer because of their excellent mechanical properties and recyclability. The industrial TPVs always contain various types of additives, which influence the viscosity ratio of EPDM and PP and the morphology of TPVs. This work studied the morphology evolution of EPDM/PP TPVs with various amounts of curing agents, fillers, and plasticizer during dynamic vulcanization in a twin-screw extruder, which provides much more complicated dynamic vulcanization process than haaker rheometer. The results show that the increased curing agents content leads to the faster morphology evolution of TPV because it enhances the cross-linking speed and the viscosity of EPDM. The increased fillers content leads to the later breakup of EPDM and the bigger size of the rubber aggregation because it enhanced the modulus of EPDM and weakens the interfacial interaction between EPDM and PP. In addition, the increase in the plasticizer content leads to the earlier breakup of EPDM and the larger size of the rubber phase in TPV. Our work firstly demonstrates the morphology evolution of industrial EPDM/PP TPV, and thus can provide a guidence for the industrial production of high-performance EPDM/PP TPVs.


Thermoplastic vulcanizates Dynamic vulcanization Morphology evolution Additives 



We would like to acknowledge the National Basic Research Program of China (Grant No. 2011CB606003) for financial support, and the financial supports of the National Natural Science Foundation of China under Grant No. 51221002 are also gratefully acknowledged.


  1. 1.
    Goharpey F, Nazockdast H (2001) J Appl Polym Sci 81:2531. doi: 10.1002/app.1694 CrossRefGoogle Scholar
  2. 2.
    Goharpey F (2003) Rubb Chem Techno l 76:239CrossRefGoogle Scholar
  3. 3.
    Antunes CF, Machado AV (2011) Eur Polym J 47:1447. doi: 10.1016/j.eurpolymj.2011.04.005 CrossRefGoogle Scholar
  4. 4.
    Martin G (2009) Eur Polym J 45:3257. doi: 10.1016/j.eurpolymj.2009.07.012 CrossRefGoogle Scholar
  5. 5.
    Antunes CF, Duin MV (2012) Mater Chem Phys 133:410. doi: 10.1016/j.matchemphys.2012.01.053 CrossRefGoogle Scholar
  6. 6.
    Prut EV (2008) J Appl Polym Sci 109:1212. doi: 10.1002/app.28158 CrossRefGoogle Scholar
  7. 7.
    Katbab AA (2000) J Appl Polym Sci 75:1127CrossRefGoogle Scholar
  8. 8.
    Bazgir S, Katbab A (2004) J Appl Polym Sci 92:2000CrossRefGoogle Scholar
  9. 9.
    Ghosh GP (1994) Polymer 35:3958CrossRefGoogle Scholar
  10. 10.
    Xiao HW, Tao J (2004) J Appl Polym Sci 92:357CrossRefGoogle Scholar
  11. 11.
    Ellul MD, Tsou AH (2004) Polymer 45:3351. doi: 10.1016/j.polymer.2004.03.029 CrossRefGoogle Scholar
  12. 12.
    Goharpey F (2001) J Appl Polym Sci 81:2531CrossRefGoogle Scholar
  13. 13.
    Antunes CF, Duin MV (2011) Polym Test 30:907. doi: 10.1016/j.polymertesting.2011.08.013 CrossRefGoogle Scholar
  14. 14.
    Machado A, Covas J (2000) J Polym Sci Part A Polym Chem 37:1311CrossRefGoogle Scholar
  15. 15.
    Machado A (2001) J Appl Polym Sci 80:1535CrossRefGoogle Scholar
  16. 16.
    Duin MV, Machado AV (2005) Polym Degrad Stab 90:340. doi: 10.1016/j.polymdegradstab.2005.04.050 CrossRefGoogle Scholar
  17. 17.
    Machado AV, Duin MV (2005) Polymer 46:6575CrossRefGoogle Scholar
  18. 18.
    Vennemann N, Bökamp K (2006) Macromol Symp 245–246(1):641CrossRefGoogle Scholar
  19. 19.
    Huang H (2002) Eur Polym J 38:857CrossRefGoogle Scholar
  20. 20.
    Fröhlich J, Niedermeier W, Luginsland HD (2005) Compos Part A 36:449CrossRefGoogle Scholar
  21. 21.
    Yang H (2006) Polymer 47:2106. doi: 10.1016/j.polymer.2006.01.076 CrossRefGoogle Scholar
  22. 22.
    Yang H (2007) Polymer 48:860. doi: 10.1016/j.polymer.2006.12.022 CrossRefGoogle Scholar
  23. 23.
    Min K, White JL (1984) Polym Eng Sci 24:1327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hanguang Wu
    • 1
  • Nanying Ning
    • 2
  • Liqun Zhang
    • 1
    • 2
  • Hongchi Tian
    • 2
  • Youping Wu
    • 1
    • 2
  • Ming Tian
    • 1
    • 3
  1. 1.Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of EducationBeijing University of Chemical TechnologyBeijingChina
  2. 2.Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer MaterialsBeijing University of Chemical TechnologyBeijingChina
  3. 3.State Key Laboratory of Organic-inorganic CompositesBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations