Skip to main content
Log in

Specific features of creep and tribological behavior of polyimide-carbon nanotubes nanocomposite films: effect of the nanotubes functionalization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The nanocomposite films were synthesized based on the thermally stable benzoxazole-containing aromatic polyimide. The multi-walled carbon nanotubes in the concentrations from 0.25 to 1.0 wt.% were introduced in the matrix polymer as a nanofiller. Two types of nanotubes were used: the pristine nanotubes and those containing COOH-groups attached to the nanotubes’ surface. The impacts of the nanoparticles on the mechanical properties of the films in both single extension and creep conditions, and on the tribological properties of the material in the polymer/steel friction couple were tested. The positive actions of the COOH-containing nanotubes on both the mechanical properties and the tribological behavior of the studied materials were evidenced. These effects can be caused by the formation of the tightly packed nanocomposite structure in which the H-bonds are formed between CO- groups of the imide cycles of the polymer chains and COOH-groups of the nanotubes. The COOH-pretreatment hinders the aggregation processes of the nanotubes if their concentration in the composite films is less than ~1 wt. %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hussain F (2006) J Compos Mater 40:1511–1575

    Article  CAS  Google Scholar 

  2. Kasgöz H, Durmus A (2008) Polym Adv Technol 19:838–845

    Article  Google Scholar 

  3. Bessonov MI, Koton MM, Kudryavtsev VV, Laius LA (1987) Polyimides—thermally stable polymers. Plenum Publishing Corp, New York

    Google Scholar 

  4. Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF (1995) Phys Rev E 52:819–828

    Article  CAS  Google Scholar 

  5. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  6. Fang C, Zhao J, Jia J, Zhang Z, Zhang X, Li Q (2010) Appl Phys Lett 97:181906

    Article  Google Scholar 

  7. Zhu BK, Xie S-H, Xu Z-K, Xu Y-Y (2006) Compos Sci Technol 66:548–554

    Article  CAS  Google Scholar 

  8. So H, Cho J, Sahoo N (2007) Eur Polym J 43:3750–3756

    Article  CAS  Google Scholar 

  9. Thuau D, Koutsos V, Cheung R (2009) J Vacuum Sci & Technol B: Microelectron and Nanometer Struct 27:3139–3144

    Google Scholar 

  10. Lebron-Colon M, Meador MA, Gaier JR, Sola F, Scheiman DA, McCorkle LS (2010) ACS Appl Mater Interfaces 2:669–676

    Article  CAS  Google Scholar 

  11. Zhang B, Bershtein VA, Sukhanova TE, Zang W, Li Y, Chen C, Egorova LM, Gofman IV, Gubanova GN, Volkov AY, Vylegzhanina ME, Yakushev PN (2012) J Macromol Sci Phys 51:1794–1814

    Article  CAS  Google Scholar 

  12. Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR (2012) Carbon 50:3–33

    Article  CAS  Google Scholar 

  13. Assali M, Leal MP, Fernández I, Romero-Gomez P, Baati R, Khiar N (2010) Nano Res 3:764–778

    Article  CAS  Google Scholar 

  14. Yang Z, Chen X, Chen C, Li W, Zhang H, Xu L, Yi B (2007) Polym Compos 28:36–41

    Article  Google Scholar 

  15. Hatui G, Das CK (2013) J Polym Res 20:77

    Article  Google Scholar 

  16. Gofman IV, Svetlichnyi VM, Yudin VE, Dobrodumov AV, Didenko AL, Abalov IV, Korytkova EN, Egorov AI, Gusarov VV (2007) Russ J Gen Chem 77:1158–1166

    Article  CAS  Google Scholar 

  17. Delozier DM, Orwoll RA, Cahoon JF, Johnston NJ, Smith JG Jr, Connell JW (2002) Polymer 43:813–822

    Article  CAS  Google Scholar 

  18. Gofman IV, Abalov IV, Tiranov VG, Yudin VE (2013) Polym Sci A 55:313–319

    Article  CAS  Google Scholar 

  19. Myshkin NK, Kim CK, Petrokovets MI (1997) Introduction to tribology. CMG Publishers, Seoul

    Google Scholar 

  20. Hertz H (1882) Mathematik 92:156–171

    Google Scholar 

Download references

Acknowledgments

The financial support provided by Russian Foundation for Basic Research (project No. 13- 03–00547) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iosif Gofman or Yao Li.

Additional information

Iosif Gofman and Baode Zhang contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gofman, I., Zhang, B., Zang, W. et al. Specific features of creep and tribological behavior of polyimide-carbon nanotubes nanocomposite films: effect of the nanotubes functionalization. J Polym Res 20, 258 (2013). https://doi.org/10.1007/s10965-013-0258-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0258-6

Keywords

Navigation