Journal of Polymer Research

, 20:246 | Cite as

Investigations of photophysical and generation properties of active elements based on dyes in aliphatic polyurethane matrix

  • V. I. Bezrodnyi
  • A. M. Negryiko
  • G. V. Klishevich
  • M. S. Stratilat
  • L. F. Kosyanchuk
  • T. T. Todosiichuk
Original Paper


A new polymer matrix based on aliphatic polyurethane was proposed and investigated for the development of laser active media for the tunable dye lasers. The polymer matrix was synthesized by the prepolymer method. The prepolymer, obtained from hexamethylene diisocyanate and oligodiethyleneglycol adipinate, was hardened by trimethylolpropane. The production method of the laser sandwich-like active media based on xanthene and pyrromethene dyes was described; their spectral, photophysical and generation characteristics were investigated. Significant increase in the beam strength of the polymer matrix, the growth in efficiency and stability of the active elements are observed due to the peculiarities of aliphatic polyurethane chemical structure. The main reason for the high photostability and operation lifetime of laser polyurethane-based active elements was shown to be the absence of reactive radicals.


Polyurethanes Optical properties Rhodamine 6G dye Pyrromethene dye Photostability Solid state dye laser 


  1. 1.
    Soffer BH, McFarland BB (1967) Continuously tunable, narrow-band organic dye lasers. Appl Phys Lett 10:266–267CrossRefGoogle Scholar
  2. 2.
    Peterson OG, Snavely BB (1968) Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate. Appl Phys Lett 12:238–240CrossRefGoogle Scholar
  3. 3.
    Аltshuler GB, Dulneva ЕG, Меshkovski IК, Кrilov LI (1982) Solid-state active media based on dye. Zh Prikl Spektrosk 36:592–599Google Scholar
  4. 4.
    Rahn MD, King TA (1995) Comparison of laser performance of dye molecules in solgel, polycom, ormosil, and polymethyl methacrylate! host media. Appl Opt 34:8260–8271CrossRefGoogle Scholar
  5. 5.
    Weissbeck A, Langhoff H, Beck A (1995) Lasing and fluorescence properties of dye-doped xerogel. Appl Phys B 61:253–255CrossRefGoogle Scholar
  6. 6.
    Duarte FJ (1994) Solid-state multiple-prizm grating dye-laser oscillators. Appl Opt 33:3857–3860CrossRefGoogle Scholar
  7. 7.
    Gromov DA, Dyumaev KM, Manenkov AA, Maslyukov AP, Matyushin GA, Nechitailo VS, Prokhorov AM (1985) Efficient plastic-host dye lasers. J Opt Soc Am B 2:1028–1031CrossRefGoogle Scholar
  8. 8.
    Maslyukov A, Sokolov S, Kaivola M, Popov S (1995) Solid-state dye laser with modified polymethylmethacrylate—doped active elements. Appl Opt 34:1516–1518CrossRefGoogle Scholar
  9. 9.
    Bondar MV, Przhonskaya OV, Tikhonov EA (1989) Photodecomposition of dyes in a polymer matrix under lasing conditions. Quant Electron 19:1415–1418CrossRefGoogle Scholar
  10. 10.
    Yashchuk VP, Prygodjuk OA (2004) Multiple scattering effect on luminescence of the dyed polymer matrix. Quant Electron Optoelectron 7:77–81Google Scholar
  11. 11.
    Tikhonov EA, Bezrodnyi VI, Smirnova TN, Sahno OV (2001) Dispersion cavities with volume holographic gratings. Quant Electron 31:227–230CrossRefGoogle Scholar
  12. 12.
    Bezrodnyi VI, Ishchenko AA (2002) High efficiency lasing of a dye-doped polymer laser with 1.06μm pumping. Appl Phys B 73:283–285CrossRefGoogle Scholar
  13. 13.
    Bezrodnyi VI, Derevyanko NA, Ishchenko AA, Slobodin VV, Karabanova LV (2002) Spectral and generating properties of active laser media based on dye-doped elastomers. Proc SPIE 4938:271–279CrossRefGoogle Scholar
  14. 14.
    Bezrodnyi VI, Ishchenko AA, Kovtun YP, YaA P (2004) Spectral and generation properties of a nonsubstituted analog of rhodamine 101 in a polyurethane matrix. J Appl Spectrosc 71:68–72CrossRefGoogle Scholar
  15. 15.
    Bortkevich AV, Geidur SA, Karapetyan OO, Kuznetsov AR, Lankova SM, Morozov AG, Polyakov VE, Sidyakova VP (1989) Solid-state active media bazed on dye-activated epoxypolymer matrces. Zh Prikl Spektrosk 50:210–216Google Scholar
  16. 16.
    Cazeca MJ, Jiang XJ, Kumar J, Tripathy SK (1997) Epoxy matrix for solid-state dye laser applications. Appl Opt 36:4965–4968CrossRefGoogle Scholar
  17. 17.
    Bezrodnyi VI, Ishchenko AA (2000) Laser media based on coloured polyurethane. Quant Electron 30:1043–1048CrossRefGoogle Scholar
  18. 18.
    Bezrodnyi VI, Bondar MV, Przhonskaya OV, Tikhonov EA (1990) Polymer lasers: photophysics of the active medium, the optical and lasing parameters. Bull Acad Sci USSR Div Sci Phys 54:1476–1483Google Scholar
  19. 19.
    Pavlopoulos TG (2002) Scaling of dye lasers with improved laser dyes. Prog Quant Electron 26:193–224CrossRefGoogle Scholar
  20. 20.
    Bondar MV, Przhonskaya OV (1998) Spectral-luminescence and lasing properties of the pyrromethene dye PM-567 in ethanol and in a polymer matrix. Quant Electron 28:753–756CrossRefGoogle Scholar
  21. 21.
    Lam SY, Damzen MJ (2003) Characterisation of solid-state dyes and their use as tunable laser amplifiers. Appl Phys B 77:577–584CrossRefGoogle Scholar
  22. 22.
    Rabek JF (1982) Experimental methods in photochemistry and photophysics Part 1. Stockholm, SwedenGoogle Scholar
  23. 23.
    Yariv E, Schultheiss S, Saraidarov T, Reisfeld R (2001) Efficiency and photostability of dye-doped solid-state lasers in diffent hosts. Opt Mater 16:29–38CrossRefGoogle Scholar
  24. 24.
    Rahn MD, King TA, Gorman AA, Hamblett I (1997) Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers. Appl Opt 36:5862–5871CrossRefGoogle Scholar
  25. 25.
    Denisov LK, Kytina IG, Kytin VG, Tsogoeva SA, Saprykin LG, Konstantinov BA (1997) Service life of dye-impregnated polymer active laser elements at various energy densities and pump powers. Quant Electron 27:115–117CrossRefGoogle Scholar
  26. 26.
    Costela A, Florido F, Garcia-Moreno I, Duchowicz R, Amat-Guerri F, Figuera JM, Sastre R (1995) Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G. Appl Phys B 60:383–389CrossRefGoogle Scholar
  27. 27.
    Onsy IHD, Zizi IA, Ismail EA, Saad ALG (2010) Preparation and properties of elastomeric polyurethane/organically modified montmorillonite nanocomposites. J Polym Res 17:801–813CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • V. I. Bezrodnyi
    • 1
  • A. M. Negryiko
    • 1
  • G. V. Klishevich
    • 1
  • M. S. Stratilat
    • 2
  • L. F. Kosyanchuk
    • 2
  • T. T. Todosiichuk
    • 2
  1. 1.Institute of Physics NAS of UkraineKyivUkraine
  2. 2.Institute of Macromolecular Chemistry NAS of UkraineKyivUkraine

Personalised recommendations