Skip to main content
Log in

A comprehensive study on the kinetics of aqueous free-radical homo- and copolymerization of acrylamide and diallyldimethylammonium chloride by online 1H-NMR spectroscopy

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Free-radical homo- and copolymerization of acrylamide (AAm) and diallyldimethylammonium chloride (DADMAC) initiated with potassium persulfate (KPS) were performed in the presence of 0.1 M NaCl solution in D2O at 50 °C. Online 1H-NMR kinetic experiments were used to study polymerization kinetics via determination of the individual and overall conversion of the comonomers and compositions of the comonomer mixture and produced copolymer as a function of the reaction time. Reactivity ratios of the AAm and DADMAC were calculated by Mao-Huglin (MH) and extended Kelen-Tudos (KT) methods to be 7.0855 ± 1.3963, 0.1216 ± 0.0301 and 6.9458 ± 2.0113, 0.1201 ± 0.0437 respectively. “Lumped” kinetic parameter (k p k − 0.5 t ) was estimated from experimental data. Results showed that k p k − 0.5 t value increases by increasing mole fraction of the AAm in the initial reaction mixture. Drift in the comonomer mixture and copolymer compositions with reaction progress was evaluated experimentally and theoretically. Theoretical values were calculated from Meyer-Lowry equation by using reactivity ratios obtained from MH method. A good fitting between the experimental and theoretical values was observed, indicating accuracy of the reactivity ratios estimated in the present work. It was found from following changes in the copolymer composition with the comonomer conversion that produced copolymer has a statistical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Destarac M, Guinaudeau A, Geagea R, Mazieres S, Van Gramberen E, Boutin C, Chadel S, Wilson J (2010) Aqueous MADIX/RAFT polymerization of diallyldimethylammonium chloride: extension to the synthesis of poly (DADMAC)–based double hydrophilic block copolymers. J Polym Sci A 48:5163–5171

    Article  CAS  Google Scholar 

  2. Zhao H-Z, Luan Z-K, Gao B-Y, Yue Q-Y (2002) Synthesis and flocculation properties of poly(diallyldimethyl ammonium chloride-vinyl trimethoxysilane) and poly(diallyldimethyl ammonium chloride-acrylamide-vinyl trimethoxysilane). J Appl Polym Sci 84:335–342

    Article  CAS  Google Scholar 

  3. Song B, Cho M, Yoon K, Lee D (2002) Dispersion polymerization of acrylamide with quaternary ammonium cationic comonomer in aqueous solution. J Appl Polym Sci 87:1101–1108

    Article  Google Scholar 

  4. Sijian H, Runhua H (1996) Influences of water-soluble cationic monomers on the polymerization rate in the inverse emulsion. Chin J Polym Sci 14:183–187

    Google Scholar 

  5. Lu S, Lin S, Yao K (2004) Study on the synthesis and application of starch-graft-poly(AM-co-DADMAC) by using a complex initiation system of CS-KPS. Starch Stärke 56:138–143

    Article  CAS  Google Scholar 

  6. Baade W, Hunkeler D, Hamielec A (1989) Copolymerization of acrylamide with cationic monomers in solution and inverse–microsuspension. J Appl Polym Sci 38:185–201

    Article  CAS  Google Scholar 

  7. Ondaral S, Usta M, Gumusderelioglu M, Arsu N, Balta DK (2010) The synthesis of water soluble cationic microgels by dispersion polymerization: their performance in kaolin deposition onto fiber. J Appl Polym Sci 116:1157–1164

    CAS  Google Scholar 

  8. Wang Q, Dan Y, Wang XG (1997) A new polymer flooding agent prepared through intermacromolecular complexation. J Macromol Sci A 34:1155–1169

    Article  Google Scholar 

  9. Mortimer DA (1991) Synthetic polyelectrolytes- A review. Polym Int 25:29–41

    Article  CAS  Google Scholar 

  10. Avci D, Mol N, Dagasan L (2002) New cationic polyelectrolytes for flocculation processes of baker’s yeast waste water. Polym Bull 48:353–359

    Article  CAS  Google Scholar 

  11. Rintoul I, Wandrey C (2009) Magnetic field effects on the copolymerization of water-soluble and ionic monomers. J Polym Sci A 47:373–383

    Article  CAS  Google Scholar 

  12. Brand F, Dautzenberg H, Jaeger W, Hahn M (2003) Polyelectrolytes with various charge densities: synthesis and characterization of diallyldimethylammonium chloride–acrylamide copolymers. Angew Makromol Chem 248:41–71

    Article  Google Scholar 

  13. Butler GB, Bunch RL (1949) Preparation and polymerization of unsaturated quaternary ammonium compounds. J Am Chem Soc 71:3120–3122

    Article  CAS  Google Scholar 

  14. Lin Y-Q, Pledger H, Butler GB (1988) Synthesis and characterization of poly(Diallyldimethylammonium Chloride-g-Acrylamide). J Macromol Sci A 25:999–1013

    Article  Google Scholar 

  15. Wandrey C, Hernandez-Barajas J, Hunkeler D (1999) In: Capek I, Hernfández-Barajas J, Hunkeler D, Reddinger JL, Reynolds JR, Wandrey C (eds) Radical polymerisation polyelectrolytes, 1st edn. Springer Berlin Heidelberg, Germany

    Google Scholar 

  16. Avci D, Bayir (2002) A copolymerization of acrylamide with allyl–acrylate quaternary ammonium monomers. Macromol Symp 1:17–22

    Article  Google Scholar 

  17. Matsumoto A, Wakabayashi S, Oiwa M, Butler GB (1989) Gelation in the copolymerization of diallyldimethylammonium chloride with acrylamide. J Macromol Sci A 26:1475–1487

    Article  Google Scholar 

  18. Bi K, Zhang Y (2012) Kinetic study of the polymerization of dimethyldiallylammonium chloride and acrylamide. J Appl Polym Sci 125:1636–1641

    Article  CAS  Google Scholar 

  19. Rintoul I, Wandrey C (2005) Approach to predict copolymer compositions in case of variable monomer reactivity. Macromolecules 38:8108–8115

    Article  CAS  Google Scholar 

  20. Wandrey C, Jaeger W (1985) Acta Polym 36:100–102

    Article  Google Scholar 

  21. Tanaka H (1986) Copolymerization of cationic monomers with acrylamide in an aqueous solution. J Polym Sci A 24:29–36

    Article  CAS  Google Scholar 

  22. Huang PC, Singh P, Reichert K-H (1986) In: Reichert K-H, Geiseler W (eds) Polymer reaction engineerin, 1st edn. New York, Huthig and Wepf

    Google Scholar 

  23. Jaeger W, Hahn M, Lieske A, Zimmermann A, Brand F (1996) Polymerization of water soluble cationic vinyl monomers. Macromol Symp 111:95–106

    Article  CAS  Google Scholar 

  24. Abdollahi M, Massoumi B, Yousefi MR, Ziaee F (2012) Free-radical homo- and copolymerization of vinyl acetate and n-butyl acrylate: kinetic studies by online 1H NMR kinetic experiments. J Appl Polym Sci 123:543–553

    Article  CAS  Google Scholar 

  25. Barner-Kowollik C, Heuts JPA, Davis TP (2001) Free-radical copolymerization of styrene and itaconic acid studied by 1H NMR kinetic experiments. J Polym Sci A 39:656–664

    Article  CAS  Google Scholar 

  26. Barner L, Barner-Kowollik C, Davis TP (2002) Free-radical copolymerization of styrene and m-isopropenyl-α, α′-dimethylbenzyl isocyanate studied by 1H NMR kinetic experiments. J Polym Sci A 40:1064–1074

    Article  CAS  Google Scholar 

  27. Mahdavian AR, Abdollahi M, Mokhtabad L, Reza Bijanzadeh H, Ziaee F (2006) Kinetic study of radical polymerization. IV. Determination of reactivity ratio in copolymerization of styrene and itaconic acid by 1H-NMR. J Appl Polym Sci 101:2062–2069

    Article  CAS  Google Scholar 

  28. Semsarzadeh MA, Abdollahi M (2008) Kinetic study of the free-radical polymerization of vinyl acetate in the presence of deuterated chloroform by 1H-NMR spectroscopy. J Appl Polym Sci 110:1784–1796

    Article  CAS  Google Scholar 

  29. Abdollahi M, Mahdavian AR, Bijanzadeh HR (2006) Kinetic study of radical polymerization VI. Copolymer composition and kinetic parameters for coplymerization of styrene–itaconic acid by on–line 1H–NMR. J Macromol Sci A 43:1597–1608

    Article  CAS  Google Scholar 

  30. Abdollahi M, Sharifpour M (2007) A new simple procedure to calculate monomer reactivity ratios by using on-line 1H NMR kinetic experiments: copolymerization system with greater difference between the monomer reactivity ratios. Polymer 48:25–30

    Article  CAS  Google Scholar 

  31. Abdollahi M, Mahdavian AR, Nouri A (2007) Kinetic study of radical polymerization VIII. A comprehensive study of solution copolymerization of vinyl acetate and methyl acrylate by 1H–NMR spectroscopy. J Macromol Sci A 44:839–848

    Article  CAS  Google Scholar 

  32. Abdollahi M, Mehdipour-Ataei S, Ziaee F (2007) Using 1H-NMR spectroscopy for the kinetic study of thein situ solution free-radical copolymerization of styrene and ethyl acrylate. J Appl Polym Sci 105:2588–2597

    Article  CAS  Google Scholar 

  33. Sünbül D, Paril A, Alb AM, Catalgil-Giz H, Giz AT (2011) Monomer and radical reactivity ratios in 4-vinylbenzenesulfonic acid sodium salt-acrylamide copolymerization in 0.1M NaCl solution. J Appl Polym Sci 120:850–856

    Article  Google Scholar 

  34. Wandrey C, Jaeger W, Reinisch G (1981) Zur kinetik der radikalischen polymerisation von dimethyl-dially-lammoniumchlorid. I. Bruttokinetik bei niedrigen umsätzen und versuche zu ihrer deutung. Acta Polym 32:197–202

    Article  CAS  Google Scholar 

  35. Tüdös F, Kelenm T (1981) Analysis of the linear methods for determining copolymerization reactivity ratios. V. Planning of experiments. J Macromol Sci A 16:1283–1297

    Article  Google Scholar 

  36. Mao R, Huglin MB (1993) A new linear method to calculate monomer reactivity ratios by using high conversion copolymerization data: terminal model. Polymer 34:1709–1715

    Article  CAS  Google Scholar 

  37. Mayo FR, Lewis FM (1944) Copolymerization. I. A basis for comparing the behavior of monomers in copolymerization; the copolymerization of styrene and methyl methacrylate. J Am Chem Soc 66:1594–1601

    Article  CAS  Google Scholar 

  38. Alfrey T Jr, Goldfinger G (1944) The mechanism of copolymerization. J Chem Phys 12:205–209

    Article  CAS  Google Scholar 

  39. Tidwell PW, Mortimer GA (1965) An improved method of calculating copolymerization reactivity ratios. J Polym Sci A 3:369–387

    CAS  Google Scholar 

  40. Meyer VE, Lowry GG (1965) Integral and differential binary copolymerization equations. J Polym Sci A 3:2843–2851

    CAS  Google Scholar 

  41. Abdollahi M (2011) A new general approach to determine more accurate comonomer reactivity ratios in controlled/living radical copolymerization systems. J Appl Polym Sci 122:1341–1349

    Article  CAS  Google Scholar 

  42. Losada R, Wandrey C (2009) Copolymerization of a cationic double-charged monomer and electrochemical properties of the copolymers. Macromolecules 42:3285–3293

    Article  CAS  Google Scholar 

  43. Wang X, Yue Q, Gao B, Si X, Sun X, Zhang S (2011) Dispersion copolymerization of acrylamide and dimethyl diallyl ammonium chloride in ethanol-water solution. J Appl Polym Sci 120:1496–1502

    Article  CAS  Google Scholar 

  44. Brand F, Dautzenberg H, Jaeger W, Hahn M (1997) Polyelectrolytes with various charge densities: synthesis and characterization of diallyldimethylammonium chloride-acrylamide copolymers. Angew Makromol Chem 248:41–71

    Article  CAS  Google Scholar 

  45. Wang X, Yue Q, Gao B, Si X, Sun X, Zhang S (2011) Kinetics of dispersion polymerization of dimethyl diallyl ammonium chloride and acrylamide. J Polym Res 18:1067–1072

    Article  CAS  Google Scholar 

  46. Wandrey C, Jaeger W (2003) Copolymerization of dimethyl diallyl ammonium chloride and acryl amide. Acta Polym 36:100–102

    Article  Google Scholar 

  47. Kazantsev OA, Shirshin KV, Sivokhin AP, Igolkin AV, Goncharova OS, Kamorin DM (2012) Copolymerization of sodium 2-acrylamido-2-methylpropane sulfonate with acrylamide and acrylonitrile in water: an effect of conditions on the compositional heterogeneity. J Polym Res 19:9886

    Article  Google Scholar 

  48. Seabrook SA, Tonge MP, Gilbert RG (2005) Pulsed laser polymerization study of the propagation kinetics of acrylamide in water. J Polym Sci A 43:1357–1368

    Article  CAS  Google Scholar 

  49. Hahn M, Jaeger W (2003) Kinetics of the free radical polymerization of dimethyl diallyl ammonium chloride, 5. Kinetic model with persulfate as initiator. Angew Makromol Chem 198:165–178

    Article  Google Scholar 

  50. Hunkeler D, Hamielec AE (1991) Mechanism, kinetics and modelling of inverse-microsuspension polymerization: 2. Copolymerization of acrylamide with quaternary ammonium cationic monomers. Polymer 32:2626–2640

    Article  CAS  Google Scholar 

  51. Guchhait S, Banerjee M, Konar RS (1991) Kinetics and mechanism of the thermal decomposition of potassium persulphate ions in aqueous solutions at 50°C in the presence of nitrogen gas and methacrylonitrile monomer. J Appl Polym Sci 43:757–765

    Article  CAS  Google Scholar 

  52. Seabrook SA, Pascal P, Tonge MP, Gilbert RG (2005) Termination rate coefficients for acrylamide in the aqueous phase at low conversion. Polymer 46:9562–9573

    Article  CAS  Google Scholar 

  53. Boyer C, Boutevin G, Robin J-J, Boutevin B (2004) Synthesis of a new macromonomer from 2-(Dimethylamino)ethyl methacrylate bearing 1-(Isopropenylphenyl)-1,1-dimethylmethyl isocyanate group. Macromol Chem Phys 205:645–655

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Abdollahi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 231 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdollahi, M., Ziaee, F., Alamdari, P. et al. A comprehensive study on the kinetics of aqueous free-radical homo- and copolymerization of acrylamide and diallyldimethylammonium chloride by online 1H-NMR spectroscopy. J Polym Res 20, 239 (2013). https://doi.org/10.1007/s10965-013-0239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0239-9

Keywords

Navigation