Advertisement

Journal of Polymer Research

, 20:235 | Cite as

Controllable preparation and characterization of the thermosensitive block polymers

  • Yueqin Yu
  • Da Hong
  • Zhe Liu
  • Fengjun Jia
  • Yanmei Zhou
  • Caifeng Leng
Original Paper

Abstract

Two kinds of triblock copolymers based on N-isopropylacrylamide (NIPAAm) and ethyl acrylate(EA), PEAn-PNIPAAmm-PEAn (BAB type) and PNIPAAmm-PEAn-PNIPAAmm (ABA type) were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. Thermosensitive block polymer of PEAn-PNIPAAmm-PEAn (BAB type) and PNIPAAmm-PEAn-PNIPAAmm (ABA type) self-assembly form flower coronal and dendritic micelles in water solution with hydrophobic PEA as the core and hydrophilic PNIPAAm as the shell, respectively. Critical micelle concentration (CMC) can be obtained by measuring the surface tension of the copolymer. The study reveals that CMC of micelles are significantly affected by the monomer weight ratios of EA/NIPAAM in block copolymer and block in the order. The higher the content of the hydrophilic block, the smaller the copolymer CMC, and ABA-type with respect to the BAB-type has a smaller CMC value. Particle size of self-assembled micelles decreased first and then rapidly increased with the temperature increasing, surfactant SDS significantly affects the particle size of the polymer. By measuring the light transmission ratio of the copolymer solution, the effect of the lower critical solution temperature (LCST) in the salt solution was investigated, and it was also found that the higher content of the hydrophilic block, the higher LCST of copolymer.

Keywords

N-isopropylacrylamide (NIPAAm) Ethyl acrylate(EA) Block copolymer Controllable preparation RAFT polymerization 

Notes

Acknowledgment

This study was supported by the National Natural Science Foundation of China (No. 20876081), and the Science Foundation of Shandong Province (No. ZR2012BM015), Qingdao Science and Technology Program for basic research projects(09-1-3-33-JCH).

References

  1. 1.
    Torchilin VP (2001) Controlled Release 73:137–172CrossRefGoogle Scholar
  2. 2.
    Nishiyama N, Kataoka K (2003) Adv Exp Med Biol 519:155–177CrossRefGoogle Scholar
  3. 3.
    Peng CL, Shieh MJ, Tsai MH, Chang CC, Lai PS (2008) Biomaterials 29(26):3599–3608CrossRefGoogle Scholar
  4. 4.
    Lee ES, Oh KT, Kim D, Youn YS, Bae YH (2007) J Control Release 123(1):19–26CrossRefGoogle Scholar
  5. 5.
    Jianzhong D, O’Reilly RK (2009) Soft Matter 5(19):3544–3561CrossRefGoogle Scholar
  6. 6.
    Li M-H, Keller P (2009) Soft Matter 5:927–937CrossRefGoogle Scholar
  7. 7.
    Qin S, Geng Y, Discher DE, Yang S (2006) Adv Mater 18(21):2905–2909CrossRefGoogle Scholar
  8. 8.
    Li Y, Lokitz BS, McCormick CL (2006) Angew Chem 45(35):5792–5795CrossRefGoogle Scholar
  9. 9.
    Hoogenboom R, Rogers S, Can A, Becer CR, Guerrero-Sanchez C, Wouters D;Hoeppener S, Schubert US (2009) Chem Commun 37:5582–5584CrossRefGoogle Scholar
  10. 10.
    Heise B, Ishaya S, Laschewsky A (2002) J Am Chem Soc 124(14):3787–3793CrossRefGoogle Scholar
  11. 11.
    Yu Y, Li Y, Liu L, Zhu C, Xu Y (2011) J Polym Res 18(2):283–291CrossRefGoogle Scholar
  12. 12.
    Qiu Y, Park K (2001) Adv Drug Deliv Rev 53(3):321–339CrossRefGoogle Scholar
  13. 13.
    Taylor LD, Cerankowski LD (1975) J Polymer Sci 13:2551Google Scholar
  14. 14.
    Masaru Y, Masaharu A, Agneza S, Hideki O, Reimar S, Johann V, Ryoichi K (1996) Macromolecules 29:8987–8989CrossRefGoogle Scholar
  15. 15.
    Mccormick CL, Lowe AB (2004) Acc Chem Res 37(5):312–325CrossRefGoogle Scholar
  16. 16.
    Convertine AJ, Neil A, Scales CW, Lowe AB, McCormick CL (2004) Biomacromolecules 5(4):1177–1180CrossRefGoogle Scholar
  17. 17.
    Scales CW, Convertine AJ, McCormick CL (2006) Biomacromolecules 7(5):1389–1392CrossRefGoogle Scholar
  18. 18.
    Bivigou-Koumba AM, Laschewsky A, Müller-Buschbaum P (2010) Colloid Polym Sci 288(5):499–517CrossRefGoogle Scholar
  19. 19.
    Lai JT, Fill D, Shea R (2002) Macromolecules 35(18):6754–6756CrossRefGoogle Scholar
  20. 20.
    Koňák Č, Pánek J, Hruby M (2007) Colloid Polym Sci 285(13):1433–1439CrossRefGoogle Scholar
  21. 21.
    Kirsh YE, Yanul NA, Popkov YM (2002) Eur Polym J 38(2):403–406CrossRefGoogle Scholar
  22. 22.
    Djokpe E, Vogt W (2001) Macromol Chem Phys 202(5):750–757CrossRefGoogle Scholar
  23. 23.
    Wei Yu C, Chu Hsi H, Jin Ru H, Min Lang T, Rong Huei C (2011) J Polym Res 18(6):1385–1395CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yueqin Yu
    • 1
  • Da Hong
    • 1
  • Zhe Liu
    • 1
  • Fengjun Jia
    • 1
  • Yanmei Zhou
    • 1
  • Caifeng Leng
    • 1
  1. 1.Key Laboratory of Eco-chemical Engineering, Ministry of Education; College of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations