Effect of solvent type on the morphology and gas permeation properties of polysulfone–silica nanocomposite membranes

  • Mahdi Pourafshari Chenar
  • Hamed Rajabi
  • Majid Pakizeh
  • Morteza Sadeghi
  • Ali Bolverdi
Original Paper


In this study, the effects of various solvents on the structure and permeation properties of polysulfone–silica nanocomposite membranes were investigated. Silica nanoparticles were prepared by the sol–gel method through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS). Polysulfone–silica nanocomposite membranes were prepared by the thermal phase inversion method. N-methyl pyrrolidone (NMP), N,N-dimethyl acetamide (DMAc) and tetrahydrofuran (THF) were used as solvents. Based on the experimental results, it was observed that the CO2/N2 and O2/N2 selectivities increased in the presence of silica nanoparticles in all cases. However, the permeabilities of the applied gases decreased, except for CO2. Based on the obtained selectivity data, permeability data, and favorable dispersion of silica nanoparticles in the polymer matrix, the results indicate that NMP is the best solvent for polysulfone–silica membrane preparation. The obtained CO2 permeability and CO2/N2 selectivity of the polysulfone–silica (5 wt%) membrane prepared using NMP as the solvent were 7 barrers and 35, respectively.


Polysulfone Silica Solvent Gas permeation Mixed matrix 



The authors gratefully acknowledge the Ferdowsi University of Mashhad for its financial support of this research (grant no. 11618). The authors also would like to thank the Iran National Science Foundation (INSF) and Parsian Pooya Polymer Company, Iran.


  1. 1.
    Ahn J, Chung WJ, Pinnau I, Guiver MD (2008) Polysulfone/silica nanoparticle mixed-matrix membranes gas separation. J Membr Sci 314:123CrossRefGoogle Scholar
  2. 2.
    Aroon MA, Ismail AF, Montazer-Rahmati MM, Matsuura T (2010) Morphology and permeation properties of polysulfone membranes for gas separation: effects of non-solvent additives and co-solvent. Sep Purif Technol 72:194CrossRefGoogle Scholar
  3. 3.
    Chen SH, Liou RM, Lai JY, Lai CL (2007) Effect of the polarity of additional solvent on membrane formation in polysulfone/N-methyl-2-pyrrolidone/water ternary system. Eur Polym J 43:3997CrossRefGoogle Scholar
  4. 4.
    Cornelius CJ, Marand E (2002) Hybrid silica-polyimide composite membranes: gas transport properties. J Membr Sci 202:97CrossRefGoogle Scholar
  5. 5.
    Ficai D, Ficai A, Voicu G, Vasile BS, Guran C, Andronescu E (2010) Polysulfone based membranes with desired pores characteristics. Matr Plastice 47:24Google Scholar
  6. 6.
    Ghosal K, Chern RT, Freeman BD, Daly WH, Negulescu II (1996) Effect of basic substituents on gas sorption and permeation in polysulfone. Macromolecules 29:4360. doi: 10.1021/MA951310I CrossRefGoogle Scholar
  7. 7.
    Hu Q, Marand E, Dhingra S, Fritsch D, Wen J, Wilkes G (1997) Poly(amideimide)/TiO2 nano-composite gas separation membranes; fabrication and characterization. J Membr Sci 135:65CrossRefGoogle Scholar
  8. 8.
    Iqbal M, Man Z, Mukhtar H, Dutta BK (2008) Solvent effect on morphology and CO2/CH4 separation performance of asymmetric polycarbonate membranes. J Membr Sci 318:167CrossRefGoogle Scholar
  9. 9.
    Joly C, Goizet S, Schrotter JC, Sanchez J, Escoubes M (1997) Sol–gel polyimide–silica composite membrane: gas transport properties. J Membr Sci 130:63CrossRefGoogle Scholar
  10. 10.
    Joly C, Smaihi M, Porcar L, Noble RD (1999) Polyimide–silica composite materials: how does silica influence their microstructure and gas permeation properties? Chem Mater 11:2331CrossRefGoogle Scholar
  11. 11.
    Kesting RE, Fritzsche AK (1993) Polymeric gas separation membranes. Wiley-Interscience, New YorkGoogle Scholar
  12. 12.
    Khulbe KC, Matsuura T, Lamarche G, Kim HJ (1997) The morphology characterization and performance of dense PPO membranes for gas separation. J Membr Sci 135:221CrossRefGoogle Scholar
  13. 13.
    Kim JH, Lee YM (2001) Gas permeation properties of poly(amide-6-b-ethylene oxide)– silica hybrid membranes. J Membr Sci 193:209Google Scholar
  14. 14.
    Kim S, Chen L, Johnson JK, Marand E (2007) Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment. J Membr Sci 294:147CrossRefGoogle Scholar
  15. 15.
    Kruczek B, Matsuura T (2000) Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance. J Membr Sci 167:203CrossRefGoogle Scholar
  16. 16.
    Kusakabe K, Ichiki K, Hayashi J, Maeda H, Morooka S (1996) Preparation and characterization of silica–polyimide composite membranes coated on porous tubes for CO2 separation. J Membr Sci 115:65CrossRefGoogle Scholar
  17. 17.
    Lee HJ, Won J, Park HC, Lee H, Kang YS (2000) Effect of poly(amic acid) imidization on solution characteristics and membrane morphology. J Membr Sci 178:35CrossRefGoogle Scholar
  18. 18.
    Mahajan R, Burns R, Schaeffer M, Koros WJ (2002) Challenges in forming successful mixed matrix membranes with rigid polymeric materials. J App Poly Sci 4:881CrossRefGoogle Scholar
  19. 19.
    Mark JE (2007) Physical properties of polymers handbook, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  20. 20.
    McHattie JS, Koros WJ, Paul DR (1991) Gas transport properties of polysulfones: 1. Role of symmetry of methyl group placement on bisphenol rings. Polymer 32:840CrossRefGoogle Scholar
  21. 21.
    Moaddeb M, Koros WJ (1997) Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles. J Membr Sci 125:143CrossRefGoogle Scholar
  22. 22.
    Mousavi SA, Sadeghi M, Motamed-Hashemia MMY, Pourafshari Chenar M, Roosta-Azad R, Sadeghi M (2008) Study of gas separation properties of ethylene vinyl acetate (EVA) copolymer membranes prepared via phase inversion method. Sep Purif Technol 62:642CrossRefGoogle Scholar
  23. 23.
    Ng BC, Ismail AF, Abdul Rahman WAW, Hasbullah H, Abdullad MS, Hassan AR (2004) Formation of asymmetric polysulfone flat sheet membrane for gas separation: rheological assessment. J Teknol 41:73Google Scholar
  24. 24.
    Nunes SP, Peinemann KV, Ohlrogge K, Alpers A, Keller M, Pires ATN (1999) Membranes of poly(ether imide) and nanodispersed silica. J Membr Sci 157:219CrossRefGoogle Scholar
  25. 25.
    Panndey P, Chauhan RS (2001) Membranes for gas separation. Prog Polym Sci 26:853CrossRefGoogle Scholar
  26. 26.
    Sadeghi M, Semsarzadeh MA, Moadel H (2009) Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles. J Membr Sci 331:21CrossRefGoogle Scholar
  27. 27.
    Sener T, Okumus E, Gurkan T, Yilmaz L (2010) The effect of different solvents on the performance of zeolite-filled composite pervaporation membranes. Desalination 261:181CrossRefGoogle Scholar
  28. 28.
    Shao L, Chung T-S, Wensley G, Goh SH, Pramoda KP (2004) Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA-TMMDA copolyimide membrane and its derived carbon membranes. J Membr Sci 244:77CrossRefGoogle Scholar
  29. 29.
    Stern SA (1994) Polymers for gas separations: the next decade. J Membr Sci 94:1CrossRefGoogle Scholar
  30. 30.
    Tabe Mohammadi A, Matsuura T, Sourirajan S (1995) Design and construction of gas permeation system for the measurement of low permeation rates and permeate compositions. J Membr Sci 98:281CrossRefGoogle Scholar
  31. 31.
    Wang H, Holmberg BA, Yan Y (2002) Homogeneous polymer–zeolite nanocomposite membranes by incorporating dispersible template-removed zeolite nanocrystals. J Matr Chem 12:3640CrossRefGoogle Scholar
  32. 32.
    Zhou H, Chen Y, Fan H, Shi H, Luo Z, Shi B (2008) The polyurethane/SiO2 nano-hybrid membrane with temperature sensitivity for water vapor permeation. J Membr Sci 318:71CrossRefGoogle Scholar
  33. 33.
    Solvay Advanced Polymers (2002) Udel polysulfone design guide. Solvay Advanced Polymers, AlpharettaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mahdi Pourafshari Chenar
    • 1
  • Hamed Rajabi
    • 1
  • Majid Pakizeh
    • 1
  • Morteza Sadeghi
    • 2
  • Ali Bolverdi
    • 1
  1. 1.Chemical Engineering Department, Faculty of EngineeringFerdowsi University of MashhadMashhadIran
  2. 2.Chemical Engineering DepartmentIsfahan University of TechnologyIsfahanIran

Personalised recommendations