Advertisement

Estimating viscosity and polarity in the microenvironment of polymeric gels—introducing a microviscosity parameter

  • Maneesha Esther Mohanty
  • Ashok Kumar Mishra
Original Paper

Abstract

Estimation of micropolarity and microfluidity at the water-polymer interface is important in understanding the physicochemical behavior of polymeric gels in the context of their wide biomedical applications. In this work, fluorescence studies of 8-Anilino-1-naphthalene-sulphonate (ANS) were used to introduce a new microviscosity parameter. Z and ET(30) solvent polarity scales were found to work well in resolving the polarity differences in various polyacrylamide gel compositions. A microviscosity parameter τη is an easy-to-estimate parameter that was used to follow the changes in microviscosity with changes in polymer composition. The microviscosity parameter could efficiently estimate the increase of microviscosity with increase in the crosslinker, as well as initiator concentrations at the same monomer concentration.

Keywords

Microviscosity Micropolarity Fluorescence Polymers Microheterogenous medium 

Notes

Acknowledgments

The authors thank the Department of Biotechnology (DBT), India for all financial support, including the spectrophotometer. M.E.M. thanks the Department of Science and Technology (DST), India for partly supporting the work under the FAST track young scientist scheme.

References

  1. 1.
    Mukhopadhyay S, Maitra IU, Krishnamoorthy G, Schmidt J, Talmon Y (2004) J Am Chem Soc 126:15905–15914CrossRefGoogle Scholar
  2. 2.
    El Maghraby GMM, Williams AC, Barry BW (2005) Int J Pharm 292:179–185CrossRefGoogle Scholar
  3. 3.
    Wu S, Shanks RA (2004) J Appl Polym Sci 93:1493–1499CrossRefGoogle Scholar
  4. 4.
    Kaparissides C, Alexandridou S, Kotti K, Chaitidou S, Recent Adv in Novel Drug Deliv Sys J of Nanotech, online DOI: 10.2240/azojono0111
  5. 5.
    Imanidis G, Imboden R (1999) Eur J Pharm Biopharm 47:283–287CrossRefGoogle Scholar
  6. 6.
    Price WS, Perng BC, Tsai CL, Hwang LP (1992) Biophys J 61:621–630CrossRefGoogle Scholar
  7. 7.
    Buech G, Herrmann W, Borchert H (2008) J Appl Mag Resonance 33:269–283CrossRefGoogle Scholar
  8. 8.
    Vasilescu M, Bandula R, Lemmetyinen H (2010) Colloid Polym Sci 288:1173–1184CrossRefGoogle Scholar
  9. 9.
    Chakrapani M, Van Winkle DH, Patterson BC, Rill RL (2002) Langmuir 18:6449–6452CrossRefGoogle Scholar
  10. 10.
    Lira LM, Martins KA, Córdoba de Torresi SI (2009) Eur Polym J 45:1232–1238CrossRefGoogle Scholar
  11. 11.
    Slavík J (1982) Biochim Biophys Acta 694:1–25CrossRefGoogle Scholar
  12. 12.
    Roy R, Mohanty A, Dey J (2005) Chem Phys Lett 414:23–27CrossRefGoogle Scholar
  13. 13.
    Tamai N, Ishikawa M, Kitamura N, Masuhara H (1991) Chem Phy Lett 184:398–403CrossRefGoogle Scholar
  14. 14.
    Kosower EM (1958) J Am Chem Soc 80:3261–3267CrossRefGoogle Scholar
  15. 15.
    Reichardt C (1994) Chem Rev 94:2319–2358CrossRefGoogle Scholar
  16. 16.
    Kamlet MJ, Abboud JL, Taft RW (1977) J Am Chem Soc 99:6027–6038CrossRefGoogle Scholar
  17. 17.
    Thomas TL, Mishra AK (2002) Eur Polym J 38:1805–1810CrossRefGoogle Scholar
  18. 18.
    Shobini J, Mishra AK (2000) Spectrochim Acta Part A: Mol& Biomol, Spectroscopy 56:2239–2314CrossRefGoogle Scholar
  19. 19.
    Conti F, Malerba F (1972) Biophysik 8:326–332CrossRefGoogle Scholar
  20. 20.
    Nachash HJ, Okay O (1996) J Appl Polym Sci 60:971–979CrossRefGoogle Scholar
  21. 21.
    Hunkeler D (1991) Macromol 24:2160–2171CrossRefGoogle Scholar
  22. 22.
    Righetti PG, Caglio S (1993) Electrophoresis 14:573–582CrossRefGoogle Scholar
  23. 23.
    Calvet D, Wong JY, Giasson S (2004) Macromol 37:7762–7771CrossRefGoogle Scholar
  24. 24.
    Thomas TL, Mishra AK (2002) ANS fluorescence as a tool to monitor cross-linking polymerization of acrylamide. European Polymer Journal 38(9):1805–1810CrossRefGoogle Scholar
  25. 25.
    Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics. Int J Toxicol. 2005;24 Suppl 2:21–50. Int. J. of Toxicol. 24(Suppl. 2):21–50, 2005Google Scholar
  26. 26.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Publishers, New YorkCrossRefGoogle Scholar
  27. 27.
    Subuddhi U, Mishra AK (2007) Colloids and surfaces B, Biointerfaces 57:102–107CrossRefGoogle Scholar
  28. 28.
    Someya Y, Yui H (2010) Anal Chem 82:5470–5476CrossRefGoogle Scholar
  29. 29.
    Shinitzky M, Barenholz Y (1978) Biochim Biophys Acta 515:367–372CrossRefGoogle Scholar
  30. 30.
    Cogan U, Shinitzky M, Weber G, Nishida T (1973) Biochem 12:521–528CrossRefGoogle Scholar
  31. 31.
    Nossal R (1985) Macromol 18:49–54CrossRefGoogle Scholar
  32. 32.
    Bansil R, Gupta MK (1980) Ferroelectrics 30(1):63–71CrossRefGoogle Scholar
  33. 33.
    Odian G (1970) Principles of polymerization, Chapter 3. Mc-Graw-Hill, New YorkGoogle Scholar
  34. 34.
    Lazebnik M, Popovic D, McCartney L, Watkins CB, Lindstrom MJ, Harter J, Sewall S, Ogilvie T, Magliocco A, Breslin TM, Temple W, Mew D, Booske JH, Okoniewski M, Hagness SC (2007) Phys Med Biol 52:6093–6115CrossRefGoogle Scholar
  35. 35.
    Han A, Yang L, Bruno Frazier A (2007) Clin Cancer Res 13:139–143CrossRefGoogle Scholar
  36. 36.
    Kumar K, Andrews ME, Jayashankar V, Mishra AK, Suresh S (2010) IEEE Transactions on Instrumentation and Measurement 59:1224–1232CrossRefGoogle Scholar
  37. 37.
    Ortega-Palacios R, Leija L, Vera A, Cepeda MFJ (2010) 7th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2010) Tuxtla Gutiérrez, Chiapas, México M,September 8–10, 2010 I.E. Catalog Number: CFP10827-ART ISBN: 978-1-4244-7314-4Google Scholar
  38. 38.
    Sen S, Sukul D, Dutta P, Bhattacharyya K (2002) J Phys Chem B 106:3763–3769CrossRefGoogle Scholar
  39. 39.
    Nandi N, Bagchi B (1998) J Phys Chem A 102:8217–8221CrossRefGoogle Scholar
  40. 40.
    Jean B, Lee LT, Cabane B (2000) Colloid & Polym Sci 278:764–770CrossRefGoogle Scholar
  41. 41.
    Goins AB, Sanabria H, Waxham MN (2008) Biophys J 95:5362–5373CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations