Advertisement

Behavior of epoxy composite resins in environments at high moisture content

  • Luigi Vertuccio
  • Andrea Sorrentino
  • Liberata Guadagno
  • Valeria Bugatti
  • Marialuigia Raimondo
  • Carlo Naddeo
  • Vittoria Vittoria
Original Paper

Abstract

Three different organo-modified clays have been incorporated by sonication into a high performance epoxy resin before the cross-linking reaction. The X-ray analysis indicated that, depending on the organoclay type, partially exfoliated and partially intercalated composites have been obtained. As shown by the DSC analysis, the clay addition seems to interact with the cross-linking reaction. The incorporation of organoclay into epoxy increased free volume and micro-voids in the samples. Sorption of water in the composite samples resulted higher than that of the pristine resin, whereas the diffusion coefficient is significantly lower. The lower value of diffusion makes the permeability at ambient conditions lower than the pristine resin. The elastic modulus of the composite sample results higher than that of the pristine resin, especially in the temperature region around the glass transition. The presence of organoclay in epoxy matrix decreased the glass transition temperature, whether the nanocomposites were in a dry or wet condition.

Keywords

Epoxy resin composites Cationic clays Cure behaviour Mechanical properties Thermal properties 

Notes

Acknowledgments

“The activities were performed in the frame of the project “IMPRESA” (DM 60704) granted to IMAST S.c.a.r.l. and funded by the M.I.U.R.”

References

  1. 1.
    Klaus F, Stoyko F, Zhong Z (2010) Polymer composites: From nano- to macro scale. Springer, New YorkGoogle Scholar
  2. 2.
    De Nograro FF, Guerrero P, Corcuera MA, Mondragon I (1995) Effects of chemical structure of hardener on curing evolution and on the dynamic mechanical behavior of epoxy resins. J Appl Pol Sci 56:177–192CrossRefGoogle Scholar
  3. 3.
    Vieth WR (1991) Diffusion in and through polymers: principles and applications. Hanser, New YorkGoogle Scholar
  4. 4.
    Jelinsky LW, Dumais JJ, Colli AL, Ellis TS, Karasz FE (1985) Nature of the water-epoxy interaction. Macromolecules 18:1091–1095CrossRefGoogle Scholar
  5. 5.
    Woo M, Piggott M (1987) Water absorption of resins and composites II: diffusion in carbon and glass reinforced epoxies. J Comp Tech Res 9:162–166CrossRefGoogle Scholar
  6. 6.
    Apicella A, Nicolais L, Mikols WJ, Seferis JC (1984) Interrelation between processing structure and properties of polymeric materials. Seferis JC, Theocaris PS Elsevier, Amsterdam, p 189Google Scholar
  7. 7.
    Apicella A, Nicolais L, Cataldis C (1985) Characterization of the morphological fine-structure of commercial thermosetting resins through hygrothermal experiments. Adv Polym Sci 66:189–207CrossRefGoogle Scholar
  8. 8.
    Moy P, Karasz FE (1980) Epoxy-water interaction. Polym Eng Sci 20:315–319CrossRefGoogle Scholar
  9. 9.
    Glaskova T, Aniskevich A (2009) Moisture absorption by epoxy/montmorillonite nanocomposite. Compos Sci Technol 69:2711–2715CrossRefGoogle Scholar
  10. 10.
    Pethrick RA, Hollins EA, Mc Ewan I, Pollock EA, Hayward D (1996) Effect of cure temperature on the structure and water absorption of epoxy/amine thermosets. Polym Int 39:275–288CrossRefGoogle Scholar
  11. 11.
    Barral L, Cano J, Lopez J, Lopez-Bueno I, Nogueira P, Abad MJ, Torres A, Ramirez C (2000) Mechanical behavior of tetrafunctional/phenol novolac epoxy mixtures cured with a diamine. J Appl Polym Sci 77:2305–2313CrossRefGoogle Scholar
  12. 12.
    Nogueira P, Ramirez C, Torres A, Abad MJ, Cano J, Lopez J, Lopez-Bueno I, Barral L (2001) Effect of water sorption on the structure and mechanical properties of an epoxy resin system. J Appl Polym Sci 80:71–80CrossRefGoogle Scholar
  13. 13.
    Wang Z, Massam J, Pinnavaia TJ (2000) Epoxy-clay nanocomposites. In: Pinnavaia TJ, Beall GW (eds) Polymer clay nanocomposites. Wiley Chichester, p 127–148Google Scholar
  14. 14.
    Becker O, Varley RJ, Simon GP (2004) Thermal stability and water uptake of high performance epoxy layered silicate nanocomposites. Eur Polymer J 40:187–195CrossRefGoogle Scholar
  15. 15.
    Sorrentino A, Tortora M, Vittoria V (2006) Diffusion behavior in polymer-clay nanocomposites. J Polymer Sci, Part B: Polymer Phys 44:265–274CrossRefGoogle Scholar
  16. 16.
    Ratna D, Manoj NR, Varley R, Singh Raman RK, Simon GP (2003) Clay reinforced epoxy nanocomposites. Polym Int 52:1403–1407CrossRefGoogle Scholar
  17. 17.
    Guadagno L, De Vivo B, Di Bartolomeo A, Lamberti P, Sorrentino A, Tucci V, Vertuccio L, Vittoria V (2011) Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon 49:1919–1930CrossRefGoogle Scholar
  18. 18.
    Guadagno L, Naddeo C, Vittoria V, Sorrentino A, Vertuccio L, Raimondo M, Tucci V, Russo S (2010) Cure behavior and physical properties of epoxy resin-filled with multiwalled Carbon nanotubes. J Nanosci Nanotechnol 10:2686–2693CrossRefGoogle Scholar
  19. 19.
    Guadagno L, Vertuccio L, Sorrentino A, Raimondo M, Naddeo C, Vittoria V, Iannuzzo G, Russo S (2009) Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes. Carbon 47:2419–2430CrossRefGoogle Scholar
  20. 20.
    Vertuccio L, Gorrasi G, Sorrentino A, Vittoria V (2009) Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr Polym 75:172–179CrossRefGoogle Scholar
  21. 21.
    Neitzert HC, Sorrentino A, Vertuccio L (2010) Epoxy/MWCNT Composite Based Temperature Sensor with Linear Characteristics. In: Malcovati P, Baschirotto A, d’Amico A, Natale CD (eds) Sensors and Microsystems: AISEM 2009 Proceedings, vol 54. BerlinGoogle Scholar
  22. 22.
    Sorrentino A, Gorrasi G, Tortora M, Vittoria V (2006) Barrier properties of polymer/clay nanocomposites. In: Yiu-Wing Mai, Zhong-Zhen Yu (eds) Polymer Nanocomposites, Chapter 11. Cambridge, p 273–292Google Scholar
  23. 23.
    Yasmin A, Luo JJ, Abot JL, Daniel IM (2006) Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos Sci Technol 66:2415–2422CrossRefGoogle Scholar
  24. 24.
    Levchik SV, Camino G, Luda MP, Costa L, Muller G, Costes B et al (1996) Epoxy resins cured with aminophenylmethylphosphine oxide. 1. Combustion performance. Polym Adv Technol 7:823–830CrossRefGoogle Scholar
  25. 25.
    Levchik SV, Camino G, Luda MP, Costa L, Costes B, Henry Y et al (1995) Mechanistic study of thermal behavior and combustion performance of epoxy resins. I. Homopolymerized TGDDM. Polym Adv Technol 6:53–62CrossRefGoogle Scholar
  26. 26.
    Levchik SV, Camino G, Costa L, Luda MP (1996) Mechanistic study of thermal behavior and combustion performance of carbon fiber-epoxy resin composites fire retarded with a phosphorus-based curing system. Polym Degrad Stab 54:317–322CrossRefGoogle Scholar
  27. 27.
    Camino G, Tartaglione G, Frache A, Manferti C, Costa G (2005) Thermal and combustion behavior of layered silicate-epoxy nanocomposites. Polym Degrad Stab 90:354–362CrossRefGoogle Scholar
  28. 28.
    Camino G, Tartaglione G, Frache A, Manferti C, Finocchiaro P, Falqui L. Fire and Polymers IV: Materials and concepts for Hazard prevention. In: Wilkie CA, Nelson GL (eds) ACS Symposium Series, Oxford University PressGoogle Scholar
  29. 29.
    Ray SS, Okamoto M (2003) Polymer–layered silicate nanocomposite: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  30. 30.
    Zhao C, Qin H, Gong F, Feng M, Zhang S, Yang M (2005) Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym Degrad Stab 87:183–189CrossRefGoogle Scholar
  31. 31.
    Park J, Jana SC (2004) Adverse effects of thermal dissociation of alkyl ammonium ions on nanoclay exfoliation in epoxy-clay systems. Polymer 45:7673–7679CrossRefGoogle Scholar
  32. 32.
    Lan T, Kaviratna PD, Pinnavaia TJ (1995) Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chem Mater 7:2144–2150CrossRefGoogle Scholar
  33. 33.
    Triantafillidis CS, Le Baron PC, Pinnavaia TJ (2002) Thermoset epoxy-clay nanocomposites: the dual role of α, ω-diamines as clay surface modifiers and polymer curing agents. J Solid State Chem 167:354–362Google Scholar
  34. 34.
    Carrasco F, Pagès P (2008) Thermal degradation and stability of epoxy nanocomposites: influence of montmorillonite content and cure temperature. Polym Degrad Stab 93:1000–1007CrossRefGoogle Scholar
  35. 35.
    Liu W, Hoa SV, Pugh M (2005) Fracture toughness and water uptake of high-performance epoxy/nanoclay nanocomposites. Compos Sci Technol 65:2364–2373CrossRefGoogle Scholar
  36. 36.
    Gasem ZM, Merah N, Adinoyi MJ, Khan Z (2012) The effects of clay content and sonication time on water uptake in epoxy-organoclay nanocomposites. Adv Mater Res 445:509–513CrossRefGoogle Scholar
  37. 37.
    Kornmann X, Rees M, Thomann Y, Necola A, Barbezat M, Thomann R (2005) Epoxy-layered silicate nanocomposites as matrix in glass fibre-reinforced composites. Compos Sci Technol 65:2259–2268CrossRefGoogle Scholar
  38. 38.
    Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR (2002) Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer 43:5915–5933CrossRefGoogle Scholar
  39. 39.
    Zilg C, Mulhaupt R, Finter J (1999) Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates. Macromol Chem Phys 200:661–670CrossRefGoogle Scholar
  40. 40.
    Lee A, Lichtenhan JD (1996) Thermal and viscoelastic property of epoxy clay and hybrid inorganic–organic epoxy nanocomposites. J App Poly Sci (73):1993–2001Google Scholar
  41. 41.
    Becker O, Varley R, Simon G (2002) Morphology, thermal relaxation and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer (43):4365–4373Google Scholar
  42. 42.
    Kornmann X, Berglund LA, Lindberg H (2000) Stiffness improvements and molecular mobility in epoxy-clay nanocomposites. Mat Res Soc Symp 628:CC11.8Google Scholar
  43. 43.
    Chen J-S, Poliks MD, Ober CK, Zhang Y, Wiesner U, Giannelis E (2002) Study of the interlayer expansion mechanism and thermal-mechanical properties of surface-initiated epoxy nanocomposites. Polymer 43:4895–4904CrossRefGoogle Scholar
  44. 44.
    Vaia RA, Giannelis EP(2001) Polymer nanocomposites: status and opportunities. MRS Bull, MayGoogle Scholar
  45. 45.
    Lan T, Pinnavaia TJ (1994) Clay-reinforced epoxy nanocomposites. Chem Mater (6):2216–2219Google Scholar
  46. 46.
    Fornes TD, Paul DR (2003) Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44:4993–5013CrossRefGoogle Scholar
  47. 47.
    Vanlandingham MR, Edduljee RF, Gillespie JW Jr (1999) Moisture diffusion in epoxy systems. J Appl Polym Sci 71:787–798CrossRefGoogle Scholar
  48. 48.
    Lee MC, Peppas NA (1993) Water transport in graphite/epoxy composites. J Appl Polym Sci 47:1349–1359CrossRefGoogle Scholar
  49. 49.
    Kornmann X, Thomann R, Mulhaupt R, Finter J, Berglund L A (2002) High performance epoxy layered silicate nanocomposites. Polym Eng Sci (42):1815–1826Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Luigi Vertuccio
    • 1
  • Andrea Sorrentino
    • 2
  • Liberata Guadagno
    • 1
  • Valeria Bugatti
    • 1
  • Marialuigia Raimondo
    • 1
  • Carlo Naddeo
    • 1
  • Vittoria Vittoria
    • 1
  1. 1.Dipartimento di Ingegneria IndustrialeUniversità di SalernoFiscianoItaly
  2. 2.CNR, Institute for Composite and Biomedical Materials (IMCB)PorticiItaly

Personalised recommendations