Skip to main content
Log in

Effect of polymerizable emulsifier and fluorine monomer on properties of self-crosslinking fluorinated polyacrylate soap-free latexes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We used a polymerizable emulsifier, ammonium allyloxtmethylate nonylphenol ethoxylates sulfate (DNS-86), to synthesize self-crosslinking fluorinated polyacrylate soap-free latices (FMBN) with a core-shell structure by a semicontinuous seeded emulsion polymerization method from dodecafluoroheptyl methacrylate (DFMA), methyl methacrylate (MMA), butyl acrylate (BA), and N-methylolacrylamide (NMA) as self-crosslinking functional monomer. Then we examined the effects of DNS-86 and DFMA on stability, average particle size and hydrophobicity of the FMBN latices or their films in detail. While dosage of the DNS-86 and the DFMA were employed as 3 wt% (on the basis of the total-monomers weight) and 8 g in our recipe, the latex and its film could be acquired with higher stability and a smaller particle size and polydispersity index, as well as favorable hydrophobicity. FTIR confirmed the structure of the FMBN. The emulsion particles’ core-shell structure was observed by transmission electron microscopy. Thermal stability of the copolymer was greatly improved with the increasing of the DFMA level. X-ray photoelectron spectroscopy analysis indicated that the fluoroalkyl groups tended to enrich at the film-air interface. Meanwhile, hydrophobicity of the self-crosslinking soap-free latex film showed some improvement compared to the general one and the non-crosslinked one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. He L, Liang JY, Zhao X, Li WD, Luo H (2010) J Prog Org Coat 69:352–358

    Article  CAS  Google Scholar 

  2. Xie KL, Hou AQ, Shi YQ (2008) J Appl Polym Sci 108:1778–1782

    Article  CAS  Google Scholar 

  3. Yang QH, Zhang TY, Li ZJ (2010) J Soc Leath Tech Ch 94:106–110

    CAS  Google Scholar 

  4. Chen YJ, Zhang CC, Chen XX (2006) Eur Polym J 42:694–701

    Article  CAS  Google Scholar 

  5. Cui XJ, Zhong SL, Wang HY (2007) Polym 48:7241–7248

    Article  CAS  Google Scholar 

  6. Cui XJ, Zhong SL, Gao Y, Wang HY (2008) Colloid Surf A 324:14–21

    Article  CAS  Google Scholar 

  7. Yang TT, Peng H, Cheng SY, Park IJ (2007) J Appl Polym Sci 104:2438–2444

    Article  CAS  Google Scholar 

  8. Xiao XY, Wang Y (2009) Colloid Surf A 348:151–156

    Article  CAS  Google Scholar 

  9. Xu GL, Deng LL, Wen XF, Pi PH, Zheng D, Cheng FJ, Yang ZR (2011) J Coat Technol Res 8:401–407

    Article  CAS  Google Scholar 

  10. Wang J, Zeng XR, Li HQ (2010) J Coat Technol Res 7:469–476

    Article  CAS  Google Scholar 

  11. Chen LJ, Wu FQ (2011) J Appl Polym Sci 122:819–826

    Article  CAS  Google Scholar 

  12. Chen LJ, Wu FQ (2011) Polym Sci Ser B 53:606–611

    Article  CAS  Google Scholar 

  13. Chen LJ, Wu FQ (2012) J Wuhan Univ Technol 27:134–137

    Article  CAS  Google Scholar 

  14. Chen LJ, Wu FQ (2012) Surf Eng 28:220–224

    Article  CAS  Google Scholar 

  15. Bai RQ, Qiu T, Xu C, He LF, Li XY (2012) Colloid Polym Sci 290:769–776

    Article  CAS  Google Scholar 

  16. Xu W, An QF, Hao LF, Sun Z, Zhao WJ (2013) J Polym Res 20(2):1–10

    Article  Google Scholar 

  17. Wang C, Li XR, Li PZ (2012) J Polym Res 19(8):1–7

    Google Scholar 

  18. Chen LJ, Wu FQ (2012) J Appl Polym Sci 123:1997–2002

    Article  CAS  Google Scholar 

  19. Xiong PT, Lu DP, Chen PZ, Huang HZ, Guan R (2007) Eur Polym J 43:2117–2126

    Article  CAS  Google Scholar 

  20. Xu GL, Liang Y, Wen XF, Pi PH, Zheng DF, Cheng J, Yang ZR (2012) Can J Chem Eng 90:1239–1245

    Article  CAS  Google Scholar 

  21. Yang TT, Peng H, Cheng SY, Park IJ (2007) J Appl Polym Sci 104:3277–3284

    Article  CAS  Google Scholar 

  22. Cheng XL, Chen ZX, Shi TS, Wang HY (2007) Colloid Surf A 292:119–124

    Article  CAS  Google Scholar 

  23. Xiong SD, Guo XL, Li L, Wu SL, Chu PK, Xu ZS (2010) J Fluorine Chem 131:417–425

    Article  CAS  Google Scholar 

  24. Xu W, An QF, Hao LF, Huang LX (2012) J Appl Polym Sci 125:2376–2383

    Article  CAS  Google Scholar 

  25. Song XY, Zhai J, Wang YL, Jiang L (2005) J Phys Chem B 109:4048–4052

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the Natural Foundation of Shaanxi Province (2012JM6013), the Key High-Tech Project from Shaanxi Province (2010ZDKG-35), Scientific Research Program of Shaanxi Provincial Education Department (2013JK0661) and the Industrialization Project from Education Department of Shaanxi Province (2011JG25) of China for financial supports of our research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiufeng An or Wei Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, L., An, Q., Xu, W. et al. Effect of polymerizable emulsifier and fluorine monomer on properties of self-crosslinking fluorinated polyacrylate soap-free latexes. J Polym Res 20, 174 (2013). https://doi.org/10.1007/s10965-013-0174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0174-9

Keywords

Navigation