Designing of multiwalled carbon nanotubes reinforced polyurethane composites as electromagnetic interference shielding materials

  • T. K. Gupta
  • B. P. Singh
  • Satish Teotia
  • Varun Katyal
  • S. R. Dhakate
  • R. B. Mathur
Original Paper


Long length multiwalled carbon nanotubes (MWCNTs) were synthesized in-house by chemical vapor deposition and their reinforced polyurethane (PU) based composites were fabricated by solvent casting followed by compression moulding technique. Electromagnetic interference (EMI) shielding effectiveness of these composites was investigated in the frequency range of 8.2–12.4 GHz (X-band). The experimental results indicate that the EMI shielding effectiveness of the composites is achieved up to –41.6 dB at 10 wt.-% loading of MWCNT, indicating the usefulness of this material for EMI shielding in the X-band. The main reason for such a high improved shielding effectiveness has been attributed to the significant improvement in the electrical conductivity of the composites by 13 order of magnitude, i.e. from 10−14 for pure PU to 7.9 Scm−1 for MWCNT-PU composites. The mechanism of improvement in EMI shielding effectiveness is discussed by resolving their contribution in absorption and reflection loss. The experimental results were found in good agreement with theoretical correlations.


Multiwalled carbon nanotubes Polyurethane Electromagnetic interference Shielding effectiveness 



The authors wish to express their gratitude to Prof. R.C. Budhani, Director NPL, to accord his permission to publish the results. Authors would like to thank to conducting polymer section for helping in the measurement of EMI shielding and Mr. K.N. Sood and Mr. Jay Tawale for their support in carrying out SEM of the samples. One of us (TG) is grateful to CSIR for awarding the research fellowship.


  1. 1.
    Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Science 265:1212CrossRefGoogle Scholar
  2. 2.
    Advani SG, Shaffer M, Sandler J (2007) Processing and Properties of Nanocomposites. World Scientific PublishingGoogle Scholar
  3. 3.
    Xu L, Nakajima H, Manias E, Krishnamoorti R (2009) Macromolecules 42:3795CrossRefGoogle Scholar
  4. 4.
    Sreekumar TV, Liu T, Min BG, Guo H, Kumar S, Hauge RH et al (2004) Adv Mater 16(1):58CrossRefGoogle Scholar
  5. 5.
    Dalton AB, Collins S, Muñoz E, Razal JM, Ebron VH, Ferraris JP (2003) Nature 423:703CrossRefGoogle Scholar
  6. 6.
    Garg P, Singh BP, Kumar G, Gupta T et al (2011) J Polym Res 18(6):1397. doi: 10.1007/s10965-010-9544-8 CrossRefGoogle Scholar
  7. 7.
    Pande S, Mathur RB, Singh BP, Dhami TL (2008) Polymer Compos 30(9):1312–1317CrossRefGoogle Scholar
  8. 8.
    Mathur RB, Singh BP, Dhami TL, Kalra Y, Lal N, Rao R, Rao AM (2010) Polymer Compos 31(2):321–327. doi: 10.1002/pc.20807 Google Scholar
  9. 9.
    Jindal P, Pande S, Sharma P, Mangla V, Chaudhury A, Patel D, Singh BP, Mathur RB, Goyal M (2012) Compos B Eng 45(1):417–422CrossRefGoogle Scholar
  10. 10.
    Mathur RB, Singh BP, Tiwari PK, Gupta TK, Choudhary V (2012) Int J Nanotechnol 9(10–12):1040–1049. doi: 10.1504/Ijnt.2012.049465 CrossRefGoogle Scholar
  11. 11.
    Zeng JJ, Saltysiak B, Johnson WS, Schiraldi DA, Kumar S (2004) Compos B Eng 35:173CrossRefGoogle Scholar
  12. 12.
    Grunlan JC, Mehrabi AR, Bannon MV, Bahr JL (2004) Adv Mater 16:150CrossRefGoogle Scholar
  13. 13.
    Benoit JM, Corraze B, Lefrant S, Blau WJ, Bernier P, Chauvet O (2001) Synth Met 121:1215CrossRefGoogle Scholar
  14. 14.
    Ayesh AS (2012) J Polym Res 19:27. doi: 10.1007/s10965-012-0027-y CrossRefGoogle Scholar
  15. 15.
    Al-Shabanat M (2012) J Polym Res 19:9795. doi: 10.1007/s10965-011-9795-z CrossRefGoogle Scholar
  16. 16.
    Shi S-L, Zhang L-Z, Li J-S (2009) J Polym Res 16:395. doi: 10.1007/s10965-008-9241-z CrossRefGoogle Scholar
  17. 17.
    Singh BP, Singh D, Mathur RB, Dhami TL (2008) Nanoscale Res Lett 3(11):444–453Google Scholar
  18. 18.
    Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fisher JE (2002) Appl Phys Lett 80:2767CrossRefGoogle Scholar
  19. 19.
    Shenogin S, Xue LP, Ozisik R, Keblinski P, Cahill DG (2004) J Appl Phys 95:8136CrossRefGoogle Scholar
  20. 20.
    Guo H, Sreekumar TV, Liu T, Kumar S (2005) Polymer 46:3001CrossRefGoogle Scholar
  21. 21.
    Ichida M, Mizuno S, Kataura H, Achiba Y, Nakamura A (2004) Appl Phys A Mater Sci Process 78:1117CrossRefGoogle Scholar
  22. 22.
    Wang Y, Jing X (2005) Polym Adv Technol 16(4):344CrossRefGoogle Scholar
  23. 23.
    Yang YL, Gupta MC, Dudley KL, Lawrence RW (2005) Adv Mater 17(16):1999CrossRefGoogle Scholar
  24. 24.
    Xiang CS, Pan YB, Liu XJ, Sun XW, Shi XM, Guo JK (2005) Appl Phys Lett 87(12):1231031CrossRefGoogle Scholar
  25. 25.
    Joo J, Epstein AJ (1994) Appl Phys Lett 65(18):2278CrossRefGoogle Scholar
  26. 26.
    Luo X, Chung DDL (1996) Carbon 34(10):1293CrossRefGoogle Scholar
  27. 27.
    Luo XC, Chung DDL (1999) Compos B 30(3):227CrossRefGoogle Scholar
  28. 28.
    Joo J, Lee CY (2000) J Appl Phys 88(1):513CrossRefGoogle Scholar
  29. 29.
    Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Adv Mater 17(9):1186CrossRefGoogle Scholar
  30. 30.
    Chung DDL (2001) Carbon 39(2):279CrossRefGoogle Scholar
  31. 31.
    Mathur RB, Pande S, Singh BP, Dhami TL (2008) Polymer Compos 29(7):717CrossRefGoogle Scholar
  32. 32.
    Li N, Huang Y, Du F, He X, Lin X, Gao H et al (2006) Nano Lett 6(6):1141CrossRefGoogle Scholar
  33. 33.
    Singh BP, Saini P, Mathur RB (2012) AIP Adv 2:022151. doi: 10.1063/1.4730043 CrossRefGoogle Scholar
  34. 34.
    Singh BP, Prasanta, Choudhary V, Saini P, Pande S, Singh VN, Mathur RB (2013) J Nanoparticle Res 15:1 doi: 10.1007/s11051-013-1554-0 Google Scholar
  35. 35.
    Singh BP, Bharadwaj P, Choudhary V, Mathur RB (2013) Appl Nanosci. doi: 10.1007/s13204-013-0214-0
  36. 36.
    Kim HM, Kim K, Lee SJ, Joo J, Yoon HS, Cho SJ et al (2004) Curr Appl Phys 4(6):577CrossRefGoogle Scholar
  37. 37.
    Yuen SM, Ma CCM, Chuang CY, Yu KC, Wu SY, Yang CC, Wei MH (2008) Compos Sci Technol 68(3–4):963CrossRefGoogle Scholar
  38. 38.
    Mathur RB, Pande S, Singh BP (2010) Properties of PMMA/carbon nanotubes nanocomposites. In: Mittal V (ed) Polymer nanotube nanocomposites: Synthesis, properties, and applications, vol. 11. Wiley-Scrivener, pp. 177–220Google Scholar
  39. 39.
    Saini P, Singh BP, Mathur RB, Dhawan SK (2009) Mater Chem Phys 113(2–3):919CrossRefGoogle Scholar
  40. 40.
    Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2011) Synth Met 161(15–16):1522CrossRefGoogle Scholar
  41. 41.
    Singh BP, Prabha, Saini P, Gupta TK et al (2011) J Nanoparticle Res 13(12):7065CrossRefGoogle Scholar
  42. 42.
    Al-Saleh MH, Sundararaj U (2009) Carbon 47(7):1738CrossRefGoogle Scholar
  43. 43.
    Hepburn C (1992) Polyurethane Elastomers. Elsevier Applied Science; London New YorkGoogle Scholar
  44. 44.
    Gogolewski S (1989) Rev Colloid Polym Sci 267(9):757CrossRefGoogle Scholar
  45. 45.
    Xia H, Song M (2005) Soft Mater 1(5):386CrossRefGoogle Scholar
  46. 46.
    Hepburn C (1982) Polyurethane Elastomers. Applied Science Publishers, London, New YorkGoogle Scholar
  47. 47.
    Liu Z, Bai G, Huang Y et al (2007) Carbon 45(4):821CrossRefGoogle Scholar
  48. 48.
    Liu Z, Bai G, Huang Y et al (2007) J Phys Chem C 111(37):13696CrossRefGoogle Scholar
  49. 49.
    Hoang AS (2011) Adv Nat Sci Nanosci Nanotechnol 2(2):1. doi: 10.1088/2043-6262/2/2/025007 Google Scholar
  50. 50.
    Mathur RB, Chatterjee S, Singh BP (2008) Compos Sci Technol 68(7–8):1608CrossRefGoogle Scholar
  51. 51.
    Das NC, Khastgir D, Chaki TK, Chakrraborthy A (1997) Compos A 31(10):1069Google Scholar
  52. 52.
    Olmedo L, Hourquebie P, Jousse F (1997) Handbook of Organic Conductive Molecules and PolymersGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • T. K. Gupta
    • 1
  • B. P. Singh
    • 1
  • Satish Teotia
    • 1
  • Varun Katyal
    • 1
  • S. R. Dhakate
    • 1
  • R. B. Mathur
    • 1
  1. 1.Physics and Engineering of Carbon, Division of Material Physics and EngineeringCSIR-National Physical LaboratoryNew DelhiIndia

Personalised recommendations