Surface graft polymerization of N-vinylcaprolactam onto polylactic acid film by UV irradiation

  • M. H. Gutiérrez-Villarreal
  • J. G. Guzmán-Moreno
Original Paper


Graft polymerization of N-vinylcaprolactam (VCL) onto the surface of a polylactic acid (PLA) film was performed using a versatile and nondestructive technique. The method used consists of two steps. In the first step, a surface initiator is formed on a substrate under UV irradiation in the presence of a benzophenone (BP) solution, which promotes photoinitiation under UV irradiation at room temperature and under nitrogen. In the second step, the monomer (VCL) is grafted onto the substrate (PLA) by a living polymerization initiated by the surface photoinitiator. The hydrophobic polylactic acid film (PLA) became hydrophilic after grafting; the contact angle of the modified surface decreased drastically from the original value of 77° to <58° within 50 s of irradiation. The surface photografting parameters [polymerization rate (C p), grafting percentage (C g), and grafting efficiency (E g)] were derived using a gravimetric method in which the grafting yield could be controlled by varying the irradiation time or the monomer concentration. The first-derivative UV spectrum recorded between 200 and 360 nm was used as a sensitive tool to follow the grafting process at different times; the signals from VCL at 265 and 310 nm increased in size as the irradiation time increased due to the increase in VCL polymer units during the grafting process. FTIR-ATR analysis exhibited a clearly defined absorption band at 1,620–1,640 cm−1, corresponding to C=O stretching vibrations in the amide groups of unstrained rings in poly(N-vinylcaprolactam) (PNVCL). These analytical techniques confirmed the successful surface graft polymerization of VCL onto the polylactic acid film.


Photografting Polylactic acid Surface modification UV spectroscopy Vinylcaprolactam Grafting efficiency 



The authors express their gratitude to CONACYT for their financial support of this project (S53075Y).


  1. 1.
    Gunatillake PA, Adhikari R (2003) Eur Cell Mater 5:1–16Google Scholar
  2. 2.
    Chromecek RC, Friends GD, Wissman LY, Yourd RA (1984) US Patent No. 4436887Google Scholar
  3. 3.
    Krish YE, Yanul NA, Popkov YM (2002) Eur Polym J 38(2):403–406CrossRefGoogle Scholar
  4. 4.
    Lozinsky VI, Simenel IA, Kurskaya EA, Kulakova VK, Galaev IYu, Mattiasson B, Grinberg VYa, Grinberg NV, Khokhlo AR (2000) Polymer 41(17):6507–6518CrossRefGoogle Scholar
  5. 5.
    Kumar A, Bansal V, Nandakumar KS, Galaev IY, Roychoudhury PK, Holmdahl R (2006) Biotechnol Bioeng 93:636–646CrossRefGoogle Scholar
  6. 6.
    Kumar A, Caballero AR, Plieva FM, Galaev IYu, Nandakumar KS, Kamihira M, Holmdahl R, Orfao A, Mattiasson B (2005) J Mol Recognit 18:84–93CrossRefGoogle Scholar
  7. 7.
    Kudryavtsev VN, Kabanov VY, Yamul NA, Kedik SA (2003) High Energ Chem 37:382–388CrossRefGoogle Scholar
  8. 8.
    Lunt J (1998) Polym Degrad Stab 59:145–152CrossRefGoogle Scholar
  9. 9.
    Mehta R, Kumar V, Bhunia H, Upadhyay NS (2005) J Macromol Sci Part C 45:325–349CrossRefGoogle Scholar
  10. 10.
    Ohkita T, Lee SH (2006) J Appl Polym Sci 100:3009–3017CrossRefGoogle Scholar
  11. 11.
    Auras R, Harte B, Selke S (2005) In: Proc 63rd Annu Tech Conf Exhibit of the Society of Plastics Engineers, Boston, MA, USA, 1–5 May 2005, pp 3240–3244Google Scholar
  12. 12.
    Agrawal A, Saran AD, Rath SS, Khana A (2004) Polymer 45:8603–8612CrossRefGoogle Scholar
  13. 13.
    Perego G, Cella GD, Bastioli C (1996) J Appl Polym Sci 59:37–43CrossRefGoogle Scholar
  14. 14.
    Janorkar AV, Metters AT, Hirt DE (2004) Macromolecules 37:9151–9159CrossRefGoogle Scholar
  15. 15.
    Edlund U, Källrot M, Albertsson AC (2005) J Am Chem Soc 127:8865–8871CrossRefGoogle Scholar
  16. 16.
    Gutiérrez-Villarreal MH, Ulloa-Hinojosa M, Gaona-Lozano JG (2008) J Appl Polym Sci 21:163–169CrossRefGoogle Scholar
  17. 17.
    Källrot M, Edlund U, Albertsson AC (2007) Biomacromoleculas 8:2492–2496CrossRefGoogle Scholar
  18. 18.
    Yang WT, Ranby B (1996) Macromolecules 29:3308–3310CrossRefGoogle Scholar
  19. 19.
    Chang-Min X, Yang WT, Jian-Ping D (2005) Macromol Chem Phys 206:1106–1113CrossRefGoogle Scholar
  20. 20.
    Garbassi F, Morra M, Occhiello E (1998) Polymer surfaces: from physics to technology. Wiley, New YorkGoogle Scholar
  21. 21.
    Meeussen F, Nies E, Berghmans H, Verbrugghe S, Goethals EF, Prez D (2000) Polymer 41:8597–8602CrossRefGoogle Scholar
  22. 22.
    Weiser WE, Pardue HL (1983) Clin Chem 29(9):1673–1677Google Scholar
  23. 23.
    Ma H, Davis RH, Bowman CN (2000) Macromolecules 33:331–335CrossRefGoogle Scholar
  24. 24.
    Kirsh YuE (1998) Poli-N-vinilpirrolidon i drugie poli-N-vinilamidy [Poly(N-vinylpyrrolidone and other poly(N-vinylamide)s]. Nauka, Moscow, p 133Google Scholar
  25. 25.
    Smith A (1982) Prikladnaya IK-spektroskopiya polimerov. Mir, Moscow, pp 308–331 (translation of: Applied infrared spectroscopy, Wiley, New York)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. H. Gutiérrez-Villarreal
    • 1
  • J. G. Guzmán-Moreno
    • 1
  1. 1.Centro de Investigación en Química Aplicada, Departamento de Procesos de Transformación de PlásticosSaltilloMexico

Personalised recommendations