Skip to main content
Log in

Surface graft polymerization of N-vinylcaprolactam onto polylactic acid film by UV irradiation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Graft polymerization of N-vinylcaprolactam (VCL) onto the surface of a polylactic acid (PLA) film was performed using a versatile and nondestructive technique. The method used consists of two steps. In the first step, a surface initiator is formed on a substrate under UV irradiation in the presence of a benzophenone (BP) solution, which promotes photoinitiation under UV irradiation at room temperature and under nitrogen. In the second step, the monomer (VCL) is grafted onto the substrate (PLA) by a living polymerization initiated by the surface photoinitiator. The hydrophobic polylactic acid film (PLA) became hydrophilic after grafting; the contact angle of the modified surface decreased drastically from the original value of 77° to <58° within 50 s of irradiation. The surface photografting parameters [polymerization rate (C p), grafting percentage (C g), and grafting efficiency (E g)] were derived using a gravimetric method in which the grafting yield could be controlled by varying the irradiation time or the monomer concentration. The first-derivative UV spectrum recorded between 200 and 360 nm was used as a sensitive tool to follow the grafting process at different times; the signals from VCL at 265 and 310 nm increased in size as the irradiation time increased due to the increase in VCL polymer units during the grafting process. FTIR-ATR analysis exhibited a clearly defined absorption band at 1,620–1,640 cm−1, corresponding to C=O stretching vibrations in the amide groups of unstrained rings in poly(N-vinylcaprolactam) (PNVCL). These analytical techniques confirmed the successful surface graft polymerization of VCL onto the polylactic acid film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gunatillake PA, Adhikari R (2003) Eur Cell Mater 5:1–16

    CAS  Google Scholar 

  2. Chromecek RC, Friends GD, Wissman LY, Yourd RA (1984) US Patent No. 4436887

  3. Krish YE, Yanul NA, Popkov YM (2002) Eur Polym J 38(2):403–406

    Article  Google Scholar 

  4. Lozinsky VI, Simenel IA, Kurskaya EA, Kulakova VK, Galaev IYu, Mattiasson B, Grinberg VYa, Grinberg NV, Khokhlo AR (2000) Polymer 41(17):6507–6518

    Article  CAS  Google Scholar 

  5. Kumar A, Bansal V, Nandakumar KS, Galaev IY, Roychoudhury PK, Holmdahl R (2006) Biotechnol Bioeng 93:636–646

    Article  CAS  Google Scholar 

  6. Kumar A, Caballero AR, Plieva FM, Galaev IYu, Nandakumar KS, Kamihira M, Holmdahl R, Orfao A, Mattiasson B (2005) J Mol Recognit 18:84–93

    Article  CAS  Google Scholar 

  7. Kudryavtsev VN, Kabanov VY, Yamul NA, Kedik SA (2003) High Energ Chem 37:382–388

    Article  CAS  Google Scholar 

  8. Lunt J (1998) Polym Degrad Stab 59:145–152

    Article  CAS  Google Scholar 

  9. Mehta R, Kumar V, Bhunia H, Upadhyay NS (2005) J Macromol Sci Part C 45:325–349

    Article  Google Scholar 

  10. Ohkita T, Lee SH (2006) J Appl Polym Sci 100:3009–3017

    Article  CAS  Google Scholar 

  11. Auras R, Harte B, Selke S (2005) In: Proc 63rd Annu Tech Conf Exhibit of the Society of Plastics Engineers, Boston, MA, USA, 1–5 May 2005, pp 3240–3244

  12. Agrawal A, Saran AD, Rath SS, Khana A (2004) Polymer 45:8603–8612

    Article  CAS  Google Scholar 

  13. Perego G, Cella GD, Bastioli C (1996) J Appl Polym Sci 59:37–43

    Article  CAS  Google Scholar 

  14. Janorkar AV, Metters AT, Hirt DE (2004) Macromolecules 37:9151–9159

    Article  CAS  Google Scholar 

  15. Edlund U, Källrot M, Albertsson AC (2005) J Am Chem Soc 127:8865–8871

    Article  CAS  Google Scholar 

  16. Gutiérrez-Villarreal MH, Ulloa-Hinojosa M, Gaona-Lozano JG (2008) J Appl Polym Sci 21:163–169

    Article  Google Scholar 

  17. Källrot M, Edlund U, Albertsson AC (2007) Biomacromoleculas 8:2492–2496

    Article  Google Scholar 

  18. Yang WT, Ranby B (1996) Macromolecules 29:3308–3310

    Article  CAS  Google Scholar 

  19. Chang-Min X, Yang WT, Jian-Ping D (2005) Macromol Chem Phys 206:1106–1113

    Article  Google Scholar 

  20. Garbassi F, Morra M, Occhiello E (1998) Polymer surfaces: from physics to technology. Wiley, New York

    Google Scholar 

  21. Meeussen F, Nies E, Berghmans H, Verbrugghe S, Goethals EF, Prez D (2000) Polymer 41:8597–8602

    Article  CAS  Google Scholar 

  22. Weiser WE, Pardue HL (1983) Clin Chem 29(9):1673–1677

    CAS  Google Scholar 

  23. Ma H, Davis RH, Bowman CN (2000) Macromolecules 33:331–335

    Article  CAS  Google Scholar 

  24. Kirsh YuE (1998) Poli-N-vinilpirrolidon i drugie poli-N-vinilamidy [Poly(N-vinylpyrrolidone and other poly(N-vinylamide)s]. Nauka, Moscow, p 133

  25. Smith A (1982) Prikladnaya IK-spektroskopiya polimerov. Mir, Moscow, pp 308–331 (translation of: Applied infrared spectroscopy, Wiley, New York)

Download references

Acknowledgments

The authors express their gratitude to CONACYT for their financial support of this project (S53075Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Gutiérrez-Villarreal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez-Villarreal, M.H., Guzmán-Moreno, J.G. Surface graft polymerization of N-vinylcaprolactam onto polylactic acid film by UV irradiation. J Polym Res 20, 149 (2013). https://doi.org/10.1007/s10965-013-0149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0149-x

Keywords

Navigation