Dry–wet spinning of temperature-sensitive PVDF hollow-fiber membranes at different bore fluid flow rates

Original Paper


In this work, dry–wet spinning was conducted to fabricate poly(vinylidene fluoride)-g-poly(N-isopropylacrylamide) (PVDF-g-PNIPAAm) copolymer hollow-fiber membranes. The effect of the bore fluid flow rate (BFFR) on the structure and performance of each hollow-fiber membrane was investigated by X-ray photoelectron spectroscopy (XPS), field emission scan electronic microscopy (FESEM), pore-size measurements, mechanical property evaluations, and a filtration experiment. It was found that the grafted PNIPAAm chains aggregated on the inner surface of the fiber membrane due to the effect of the bore fluid. When the permeation temperature was increased from 20 to 45 °C, a drastic reduction in the pure-water flux and a remarkable increase in the retention of bovine serum albumin (BSA) were observed at around 32 °C, indicating that the as-prepared fiber membranes exhibit excellent temperature sensitivity. Pore-size measurements confirmed that both the mean pore size and the porosity increase with increasing BFFR, endowing the fiber membranes with high pure-water fluxes and low retentions of BSA.


Poly(vinylidene fluoride) Poly(N-isopropylacrylamide) Hollow-fiber membrane Temperature-sensitive Bore fluid flow rate 



This work was financially supported by the National Natural Science Foundation of China (grant no. 21174103), the Project of Science and Technical Development of China (grant no. 2007AA03Z533), the Key Grant Project of the Chinese Ministry of Education (grant no. 209005), and the Science and Technical Development Foundation of Colleges and Universities, Tianjin, China (grant no. 20071214).


  1. 1.
    Zhang MG, Nguyen QT, Ping ZH (2009) J Membr Sci 327:78–86CrossRefGoogle Scholar
  2. 2.
    Peng N, Chung TS (2008) J Membr Sci 310:455–465CrossRefGoogle Scholar
  3. 3.
    Wang P, Chung TS (2012) J Membr Sci 421–422:361–374CrossRefGoogle Scholar
  4. 4.
    Bakeri G, Ismail AF, Rahimnejad M, Matsuura T, Rana D (2012) Sep Purif Technol 98:262–269CrossRefGoogle Scholar
  5. 5.
    Ghasem N, Al-Marzouqi M, Duidar A (2012) Sep Purif Technol 98:174–185CrossRefGoogle Scholar
  6. 6.
    Hashim NA, Liu F, Abed MRM, Li K (2012) J Membr Sci 415:399–411CrossRefGoogle Scholar
  7. 7.
    Tang YD, Li N, Liu AJ, Ding SK, Yi CH, Liu H (2012) Desalination 287:326–339CrossRefGoogle Scholar
  8. 8.
    Khayet M, García-Payo MC, Qusay FA, Zubaidy MA (2009) J Membr Sci 330:30–39CrossRefGoogle Scholar
  9. 9.
    Chou WL, Yang MC (2005) J Membr Sci 250:259–267CrossRefGoogle Scholar
  10. 10.
    Shang MX, Matsuyama H, Teramoto M, Lloyd DR, Kubota N (2003) Polymer 44:7441–7447CrossRefGoogle Scholar
  11. 11.
    Chung TS, Kafchinski ER (1997) J Appl Polym Sci 65:1555–1569CrossRefGoogle Scholar
  12. 12.
    Qin JJ, Chung TS (2004) J Membr Sci 229:1–9CrossRefGoogle Scholar
  13. 13.
    Feng CY, Khulbe KC, Chowdhury G, Matsuura T, Sapkal VC (2001) J Membr Sci 189:193–203CrossRefGoogle Scholar
  14. 14.
    Wang PP, Ma J, Wang ZH, Shi FM, Liu QL (2012) Langmuir 28:4776–4786CrossRefGoogle Scholar
  15. 15.
    Karppi J, Åkerman S, Åkerman K, Sundell A, Penttilä I (2010) J Polym Res 17:71–76CrossRefGoogle Scholar
  16. 16.
    Tarvainen T, Nevalainen T, Sundell A, Svarfvar B, Hyrsylä J, Paronen P, Järvinen K (2000) J Control Release 66:19–26CrossRefGoogle Scholar
  17. 17.
    Li Q, Bi QY, Lin HH, Bian LX, Wang XL (2013) J Membr Sci 427:155–167CrossRefGoogle Scholar
  18. 18.
    Yu JZ, Zhu LP, Zhu BK, Xu YY (2011) J Membr Sci 366:176–183CrossRefGoogle Scholar
  19. 19.
    Xie R, Li Y, Chu LY (2007) J Membr Sci 289:76–85CrossRefGoogle Scholar
  20. 20.
    Ying L, Kang ET, Neoh KG (2002) Langmuir 18:6416–6423CrossRefGoogle Scholar
  21. 21.
    Guo YF, Feng X, Chen L, Zhao YP, Bai JN (2010) J Appl Polym Sci 116:1005–1009Google Scholar
  22. 22.
    Feng X, Guo YF, Chen X, Zhao YP, Li JX, He XL, Chen L (2012) Desalination 290:89–98CrossRefGoogle Scholar
  23. 23.
    Wang WY, Chen L, Yu X (2006) J Appl Polym Sci 101:833–837CrossRefGoogle Scholar
  24. 24.
    Shen X, Zhao YP, Chen L, Feng X, Yang D, Zhang Q, Su D (2013) Polym Eng Sci 53:571–579CrossRefGoogle Scholar
  25. 25.
    Chen WJ, Su YL, Zheng LL, Wang LJ, Jiang ZY (2009) J Membr Sci 337:98–105CrossRefGoogle Scholar
  26. 26.
    Asatekin A, Kang S, Elimelech M, Mayes AM (2007) J Membr Sci 298:136–146CrossRefGoogle Scholar
  27. 27.
    Wang DL, Li K, Teo WK (1999) J Membr Sci 163:211–220CrossRefGoogle Scholar
  28. 28.
    Yu DG, Chou WL, Yang MC (2006) Sep Purifi Technol 51:1–9CrossRefGoogle Scholar
  29. 29.
    Alem H, Duwez AS, Lussis P, Lipnik P, Jonas AM, Demoustier-Champagne S (2008) J Membr Sci 308:75–86CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, School of Materials Science and EngineeringTianjin Polytechnic UniversityTianjinPeople’s Republic of China

Personalised recommendations