Advertisement

Effect of annealing on phase structure and mechanical behaviors of polypropylene hard elastic films

  • Dongming Liu
  • Jian Kang
  • Ming Xiang
  • Ya Cao
Original Paper

Abstract

The effect of annealing temperature on phase structure of polypropylene hard elastic (HEPP) films was investigated. The morphology and orientation of crystalline phase were examined by scanning electron microscope (SEM) and Fourier transform infrared (FT-IR). It was found that the content of defects in crystals was decreased and the orientation of crystalline phase was increased after annealing. A shoulder endothermic peak was observed below the melting peak in DSC melting curve of annealed HEPP film, and the peak of this shoulder peak increased to a higher temperature with the increase of annealing temperature. The integral area of this shoulder peak decreased when tensile strain increased from 0 to 2.0, and it almost disappeared when the film stretched to the strain of 2.0. The shoulder endothermic peak in DSC melting curve could be explained by the formation of microcrystals in the amorphous between primary lamellae during annealing process. The microcrystals acted as inter-lamellar entanglements during tensile process, which improved the strength of amorphous phase and elastic recovery of HEPP films.

Keywords

Polypropylene Hard elastic film Anneal Phase structure Mechanical behavior 

References

  1. 1.
    Sadeghi F, Ajjiand A, Carreau PJ (2007) J Membrane Sci 292:62CrossRefGoogle Scholar
  2. 2.
    Aroraand P, Zhang ZJ (2004) Chem Rev 104:4419CrossRefGoogle Scholar
  3. 3.
    Zhang SS (2007) J Power Sources 164:351CrossRefGoogle Scholar
  4. 4.
    Kim J-J, Jang T-S, Kwon Y-D, Kimand UY, Kim SS (1994) J Membrane Sci 93:209CrossRefGoogle Scholar
  5. 5.
    Sadeghi F, Ajjiand A, Carreau PJ (2007) Polym Eng Sci 47:1170CrossRefGoogle Scholar
  6. 6.
    Druin ML (1974) US Patent 3801404Google Scholar
  7. 7.
    Chou CJ, Hiltnerand A, Baer E (1986) Polymer 27:369CrossRefGoogle Scholar
  8. 8.
    Nogales A, Hsiao BS, Somani RH, Srinivas S, Tsou AH, Balta-Callejaand FJ, Ezquerra TA (2001) Polymer 42:5247CrossRefGoogle Scholar
  9. 9.
    Parkand I, Noether H (1975) Colloid Polym Sci 253:824CrossRefGoogle Scholar
  10. 10.
    Poussin L, Bertin YA, Parisotand J, Brassy C (1998) Polymer 39:4261CrossRefGoogle Scholar
  11. 11.
    Bai H, Luo F, Zhou T, Deng H, Wangand K, Fu Q (2011) Polymer 52:2351CrossRefGoogle Scholar
  12. 12.
    Zhang Q, Mo Z, Liuand S, Zhang H (2000) Macromolecules 33:5999CrossRefGoogle Scholar
  13. 13.
    Ferrer-Balas D, Maspoch ML, Martinezand A, Santana O (2001) Polymer 42:1697CrossRefGoogle Scholar
  14. 14.
    Drozdovand AD, de Claville Christiansen J (2002) Polymer 43:4745CrossRefGoogle Scholar
  15. 15.
    Hedesiu C, Demco D, Kleppinger R, Poel GV, Gijsbers W, Blümich B, Remerieand K, Litvinov V (2007) Macromolecules 40:3977CrossRefGoogle Scholar
  16. 16.
    Frontiniand P, Fave A (1995) J Mater Sci 30:2446CrossRefGoogle Scholar
  17. 17.
    Yeh CF, Su AC, Chen M (1995) J Polym Res 3:139CrossRefGoogle Scholar
  18. 18.
    Maiti P, Hikosaka M, Yamada K, Todaand A, Gu F (2000) Macromolecules 33:9069CrossRefGoogle Scholar
  19. 19.
    Iijimaand M, Strobl G (2000) Macromolecules 33:5204CrossRefGoogle Scholar
  20. 20.
    Zia Q, Milevaand D, Androsch R (2008) Macromolecules 41:8095CrossRefGoogle Scholar
  21. 21.
    Krügerand K, Zachmann H (1993) Macromolecules 26:5202CrossRefGoogle Scholar
  22. 22.
    Fougnies C, Damman P, Dosiereand M, Koch M (1997) Macromolecules 30:1392CrossRefGoogle Scholar
  23. 23.
    Wang ZG, Hsiao B, Sauerand B, Kampert W (1999) Polymer 40:4615CrossRefGoogle Scholar
  24. 24.
    Kongand Y, Hay J (2003) Polymer 44:623CrossRefGoogle Scholar
  25. 25.
    Luand SX, Cebe P (1996) Polymer 37:4857CrossRefGoogle Scholar
  26. 26.
    Liuand T, Petermann J (2001) Polymer 42:6453CrossRefGoogle Scholar
  27. 27.
    Di Lorenzo ML, Righetti MC, Coccaand M, Wunderlich B (2010) Macromolecules 43:7689CrossRefGoogle Scholar
  28. 28.
    Righetti MC, Di Lorenzo ML, Tombariand E, Angiuli M (2008) J Phys Chem B 112:4233CrossRefGoogle Scholar
  29. 29.
    Xuand H, Cebe P (2004) Macromolecules 37:2797CrossRefGoogle Scholar
  30. 30.
    Wunderlich B (2003) Prog Polym Sci 28:383CrossRefGoogle Scholar
  31. 31.
    Langhe DS, Hiltnerand A, Baer E (2011) Polymer 52:5879CrossRefGoogle Scholar
  32. 32.
    Pasquini N (2005) Polypropylene handbook. Hanser Gardner Publications, MunichGoogle Scholar
  33. 33.
    Tabatabaei SH, Carreauand PJ, Ajji A (2009) Polymer 50:4228CrossRefGoogle Scholar
  34. 34.
    Lee S-Y, Parkand S-Y, Song H-S (2006) Polymer 47:3540CrossRefGoogle Scholar
  35. 35.
    Stribeck N, Nochel U, Funari SS (2009) Macromolecules 42:2093CrossRefGoogle Scholar
  36. 36.
    Na B, Li Z, Lv R, Tian N, Zou S (2011) J Polym Res 18:2103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengduPeople’s Republic of China

Personalised recommendations